Skip to main content

Plasma as an Alternative Way to Gas Reforming and Ash Disposal

  • Chapter
  • First Online:
Clean Energy from Waste

Part of the book series: Springer Theses ((Springer Theses))

  • 767 Accesses

Abstract

Plasma has long fascinated scientists and engineers, due to its unique ability to vaporize and destroy any chemical bond in the organic and inorganic forms. The use of electricity as input is also very interesting in waste treatment applications, as it decouples the heat generation from the organic fraction, thus allowing for higher flexibility and better control of the processing unit. However the use of electricity is also a main drawback since it is the most expensive form of energy. Furthermore, there is a lack of data on the reliability of plasma treatment that could prevent its development at large scales. These considerations led to the development of multiple-stage processes, where the plasma is used as a post-processing stage for conditioning the product streams generated from the primary gasification unit (e.g. FBG or rotary kiln). In this way, the majority of the energy input to the process is derived from the controlled oxidation reactions of the solid fuel at the gasifiers, which greatly limits the plasma arc electrical power demand which constitutes only a minor fraction of the total energy content of the fuel to the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babaritskii AI et al (2004) Partial hydrocarbon oxidation processes induced by atmospheric-pressure microwave-discharge plasma. High Energy Chem 38(6):407–410

    Article  Google Scholar 

  • Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy 33(20):5545–5553

    Google Scholar 

  • Bosmans A et al (2013) The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J Cleaner Prod 55:10–23. Available at: http://dx.doi.org/10.1016/j.jclepro.2012.05.032

  • Bromberg L, Cohn DR, Rabinovich A, Alexeev N, Samokhin A, Hadidi K, Palaia J, Margarit-Bel N (2006) Onboard plasmatron hydrogen production for improved vehicles. Massachusetts Institute of Technology, Plasma Fusion and Science Center

    Google Scholar 

  • Chen HL et al (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43(7):2216–2227

    Article  Google Scholar 

  • Choi YH, Kim JH, Hwang YS (2006) One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma. In: Thin solid films. pp 389–395

    Google Scholar 

  • Delagrange S, Pinard L, Tatibouët JM (2006) Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts. Appl Catal B 68(3–4):92–98

    Article  Google Scholar 

  • Font Palma C (2013) Modelling of tar formation and evolution for biomass gasification: a review. Appl Energy 111:129–141

    Article  Google Scholar 

  • Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Gliding arc gas discharge. Progr Energ Combust Sci 25:211–231

    Google Scholar 

  • Futamura S, Annadurai G (2008) Effects of temperature, voltage properties, and initial gas composition on the plasma reforming of aliphatic hydrocarbons with CO2. IEEE Trans Ind Appl 44(1):53–60

    Google Scholar 

  • Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas. Fuel 89(6):1187–1192, June

    Google Scholar 

  • Gallagher MJ, Fridman A (2011a) Fuel cells: technologies for fuel processing, Elsevier. Available at: http://www.sciencedirect.com/science/article/pii/B9780444535634100082. Accessed 7 Sept 2015

  • Gallagher MJ, Fridman A (2011b) Plasma reforming for H2-rich synthesis gas. In: Fuel cells: technologies for fuel processing. pp 223–259

    Google Scholar 

  • Garcia XA, Hüttinger KJ (1989) Steam gasification of naphthalene as a model reaction of homogeneous gas/gas reactions during coal gasification. Fuel 68(10):1300–1310

    Google Scholar 

  • Givotov VK, Potapkin BV, Rusanov VD (2005) Low-temperature plasma chemistry. In: Lebedev YA, Plate NA, Fortov VE (eds) Encyclopedia of low-temperature plasma, vol 8.1. Pleiades Publishing, Moscow, p 4

    Google Scholar 

  • Gomez E et al (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161(2–3):614–626

    Article  Google Scholar 

  • Gómez-Barea A, Leckner B (2010) Modeling of biomass gasification in fluidized bed. Prog Energy Combust Sci 36(4):444–509

    Google Scholar 

  • Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41(5):053001

    Article  Google Scholar 

  • Heintze M, Pietruszka B (2004) Plasma catalytic conversion of methane into syngas: the combined effect of discharge activation and catalysis. Catal Today 21–25

    Google Scholar 

  • Heller L, Catapreta CAA (2003) Solid waste disposal in urban areas and health—the case of Belo Horizonte, Brazil. Waste Manage Res 21(6):549–556

    Article  Google Scholar 

  • Helsen L, Bosmans A (2010) Waste-to-Energy through thermochemical processes: matching waste with process. First International Symposium on Enhanced Landfill Mining, Houthalen-Helchteren, Belgium, 4–6/10/2010

    Google Scholar 

  • Hong Y, Niu J, Pan J, Bi Z, Ni W, Liu D, Li J, Wu Y (2016) Electron temperature and density measurement of a dielectric barrier discharge argon plasma generated with tube-to-plate electrodes in water. Vacuum 130:130–136

    Google Scholar 

  • Iddles DM, Chapman CD, Forde AJ, Heanley CP (2000) The plasma treatment of incinerator ashes. Tetronics Limited. Available at: http://star-power.it/documenti/etisfile.pdf

  • Janča J, Czernichowski A (1998) Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure. Surf Coat Technol 98(1–3):1112–1115

    Google Scholar 

  • Jess A (1996) Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels. Fuel 75(12):1441–1448

    Article  Google Scholar 

  • Jönsson O (1985) Thermal cracking of tars and hydrocarbons by addition of steam and oxygen in the cracking zone. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier Applied Science, London, pp 733–746

    Google Scholar 

  • Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K (2003) Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. Fuel 82(18):2291–2297

    Google Scholar 

  • Lee DH et al (2010a) Effect of excess oxygen in plasma reforming of diesel fuel. Int J Hydrogen Energy 35(10):4668–4675

    Article  Google Scholar 

  • Lee DH et al (2010b) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrogen Energy 35(20):10967–10976

    Article  Google Scholar 

  • Lee DH et al (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33(1):249–269

    Article  Google Scholar 

  • Massines F et al (1998) Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83(6):2950. Available at: http://link.aip.org/link/JAPIAU/v83/i6/p2950/s1&Agg=doi

  • Materazzi M et al (2014) Tar evolution in a two stage fluid bed–plasma gasification process for waste valorization. Fuel Process Technol 128:146–157. Available at: http://www.sciencedirect.com/science/article/pii/S037838201400280X. Accessed 7 Sept 2015

  • Meawad AS, Bojinova DY, Pelovski YG (2010) An overview of metals recovery from thermal power plant solid wastes. Waste Management 30(12):2548–2559

    Google Scholar 

  • Mutaf-yardimci O et al (1998) Employing plasma as catalyst in hydrogen production. Int J Hydrogen Energy 23(12):1109–1111. Available at: http://www.sciencedirect.com/science/article/pii/S0360319998000056. Accessed 7 Sept 2015

  • Müller U, Rübner K (2006) The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem Concr Res 36(8):1434–1443

    Article  Google Scholar 

  • Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catal Today 211:29–38

    Article  Google Scholar 

  • Petitpas G et al (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32(14):2848–2867

    Article  Google Scholar 

  • Rocca S, van Zomeren A, Costa G, Dijkstra JJ, Comans RNJ, Lombardi F (2012) Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Waste Manag 32(4):759–768

    Google Scholar 

  • Sanz A, Corella J (2006) Modeling circulating fluidized bed biomass gasifiers. Results from a pseudo-rigorous 1-dimensional model for stationary state. Fuel Process Technol 87(3):247–258

    Article  Google Scholar 

  • Sekiguchi H, Mori Y (2003) Steam plasma reforming using microwave discharge. In: Thin solid films. pp 44–48

    Google Scholar 

  • Sobacchi M (2002) Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. Int J Hydrogen Energy 27(6):635–642. Available at: http://www.sciencedirect.com/science/article/pii/S0360319901001793. Accessed 7 Sept 2015

  • Sobacchi MG, Saveliev AV, Fridman AA, Kennedy LA, Ahmed S, Krause T (2002) Experimental assessment of a combined plasma/catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels. Int J Hydrogen Energy 27(6):635–642

    Google Scholar 

  • Starikovskii AY et al (2006) Plasma-assisted combustion. Pure Appl Chem 78(6):1265–1298

    Article  Google Scholar 

  • Tao X et al (2011) CH4–CO2 reforming by plasma—challenges and opportunities. Prog Energy Combust Sci 37(2):113–124

    Article  Google Scholar 

  • Thornblom J, Roihjert K-J (1992) Utilizing plasma technology for chemical reactions in controlled atmosphere. Pure Appl Chem 64(5):671–676

    Article  Google Scholar 

  • Tonks L, Langmuir I (1929) Oscillations in ionized gases. Phys Rev 33(2):195–210

    Article  MATH  Google Scholar 

  • Vreugdenhil BJ, Zwart RWR (2009) Tar formation in pyrolysis and gasification. ECN-E–08-087 Report, June 2009. Available at: https://www.ecn.nl/docs/library/report/2008/e08087.pdf

  • Wang J-J et al (2013) Recent developments in DBD plasma flow control. Prog Aerosp Sci 62:52–78. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0376042113000535

  • Yang Y (2002) Methane conversion and reforming by Nonthermal Plasma on Pins. Ind Eng Chem Res 41(24):5918–5926

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Materazzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Materazzi, M. (2017). Plasma as an Alternative Way to Gas Reforming and Ash Disposal. In: Clean Energy from Waste. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46870-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46870-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46869-3

  • Online ISBN: 978-3-319-46870-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics