Skip to main content

Gasification of Waste Derived Fuels in Fluidized Beds: Fundamental Aspects and Industrial Challenges

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Fluidised beds are the most popular technologies for gasification as they are considered to be more robust and versatile than other more conventional reactors. Most of the commercial fluid bed gasifiers (FBG) were originally developed for operation coal and/or pure biomass. The translation of the systems to operation on waste is the issue which represents the most significant technical difficulty, and from this cascade particular concerns regarding the ability to achieve long term stable operation, as well as wider confidence in commercial viability. The purpose of this Chapter is to appraise the fluidized bed gasification systems in light of the exotic characteristics of alternative fuels derived from waste materials. Given the technology’s heritage there is extensive technical information available regarding the modus operandi of fluidized bed reactors. However, given the relatively limited track record of operation on waste, this depth of information is helpful in appraising the expected performance of a waste-fed fluid bed system and the technical issues associated therein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abatzoglou N, Legast P, Delvaux P, Bangala D, Chornet E (1997) Gas conditioning technologies for biomass and waste gasification. In: Overend RP, Chornet E (eds) Proceedings of the 3rd biomass conference of the Americas, vol 1. August 24–29, Montréal, Canada, pp 599–606

    Google Scholar 

  • Abu El-Rub Z, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43(22):6911–6919. Available at: http://dx.doi.org/10.1021/ie0498403

  • Anthony E (1995) Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Prog Energy Combust Sci 21(3):239–268

    Article  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32(4):625–639. Available at: http://dx.doi.org/10.1016/j.wasman.2011.09.025

  • Arena U, Di Gregorio F (2013) Element partitioning in combustion- and gasification-based waste-to-energy units. Waste Manag 33(5):1142–1150. Available at: http://dx.doi.org/10.1016/j.wasman.2013.01.035

  • Arena U, Zaccariello L, Mastellone ML (2009) Tar removal during the fluidized bed gasification of plastic waste. Waste Manag 29(2):783–791

    Article  Google Scholar 

  • Arena U, Zaccariello L, Mastellone ML (2010) Fluidized bed gasification of waste-derived fuels. Waste Manag 30(7):1212–1219. Available at: http://dx.doi.org/10.1016/j.wasman.2010.01.038

  • Aznar MP, Caballero MA, Gil J, Martín JA, Corella J (1998) Commercial steam reforming catalysts to improve biomass gasification with steam–oxygen mixtures. 2. Catalytic tar removal. Ind Eng Chem Res 37(7):2668–2680

    Google Scholar 

  • Bai X et al (2014) Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 128:170–179. Available at: http://dx.doi.org/10.1016/j.fuel.2014.03.013

  • Barea AG, Thunman H (2007) Prediction of gas composition in biomass gasifiers. Congress of Energy, pp 4–7. Available at: http://grupo.us.es/bioenergia/templates/jubilee/pdf/presentacion8-1.pdf

  • Basu P (2010) Biomass gasification design handbook. Available at: http://www.sciencedirect.com/science/article/pii/B9780123749888000052

  • Boerrigter H et al (2005) “Olga” tar removal technology. Energy 58

    Google Scholar 

  • Broström M (2010) Aspects of alkali chloride chemistry on deposit formation and high temperature corrosion in biomass and waste fired boilers

    Google Scholar 

  • Brown RC, Dawson MR, Smeenk SL (1996) Bed material agglomeration during fluidized bed combustion. Final report – Iowa State University Ames, IA 50011. Available at: http://www.osti.gov/scitech/servlets/purl/216299. Accessed 6th May 2013

  • Caputo AC, Pelagagge PM (2001) Waste-to-energy plant for paper industry sludges disposal: technical-economic study. J Hazard Mater 81(3):265–283

    Google Scholar 

  • Caputo AC, Pelagagge PM (2002) RDF production plants: I design and costs. Appl Therm Eng 22(4):423–437. Available at: http://www.sciencedirect.com/science/article/pii/S1359431101001004. Accessed 7 Sept 2015

  • Chapman C, Taylor R, Ray R (2010) The Gasplasma process : it’s application in enhanced landfill mining. In: International academic symposium on enhanced landfill mining

    Google Scholar 

  • Chen H, Namioka T, Yoshikawa K (2011) Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge. Appl Energy 88(12):5032–5041. Available at: http://dx.doi.org/10.1016/j.apenergy.2011.07.007

  • Chirone R, Salatino P, Massimilla L (1989) Secondary fragmentation of char particles during combustion in a fluidized bed. Combust Flame 77(1):79–90. Available at: http://www.sciencedirect.com/science/article/pii/0010218089901065. Accessed 7 Sept 2015

  • Chirone R, Massimilla L, Salatino P (1991) Comminution of carbons in fluidized bed combustion. Prog Energy Combust Sci 17(4):297–326. Available at: http://www.sciencedirect.com/science/article/pii/0360128591900069. Accessed 7 Sept 2015

  • Chirone R, Miccio F, Scala F (2004) On the relevance of axial and transversal fuel segregation during the FB combustion of a biomass. Energy Fuels 18(4):1108–1117

    Article  Google Scholar 

  • De Souza-Santos ML (1989) Comprehensive modelling and simulation of fluidized bed boilers and gasifiers. Fuel 68(12):1507–1521. Available at: http://www.sciencedirect.com/science/article/pii/0016236189902883. Accessed 7 Sept 2015

  • Defra (2004) Rvealing the value of the natural environment in England. March

    Google Scholar 

  • Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manage 42(11):1357–1378. Available at: http://www.sciencedirect.com/science/article/pii/S0196890400001370. Accessed 24 Nov 2014

  • Devi L (2005) Catalytic removal of biomass tars: olivine as prospective in-bed catalyst for fluidized-bed biomass gasifiers. Available at: http://alexandria.tue.nl/extra2/200510623.pdf

  • Devi L, Ptasinski KJ, Janssen FJJG (2002) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24(2):125–140

    Article  Google Scholar 

  • Diaz LF, Savage GM (2007) Factors that affect the process. In: Diaz LF, De Bertoldi M, Bidlingmaier W, Stentiford E (eds) Compost science and technology, vol 8. Elsevier, Amsterdam, Netherlands, pp 49–65. Doi:10.1016/s1478-7482(07)80007-8

  • Font Palma C (2013a) Modelling of tar formation and evolution for biomass gasification: a review. Appl Energy 111:129–141. Available at: http://dx.doi.org/10.1016/j.apenergy.2013.04.082

  • Fraga A-R, Gaines AF, Kandiyoti R (1991) Characterization of biomass pyrolysis tars produced in the relative absence of extraparticle secondary reactions. Fuel 70(7):803–809

    Article  Google Scholar 

  • Gendebien A et al (2003) Refuse derived fuel, current practice and perspectives. Curr Pract 1–219

    Google Scholar 

  • Gómez-Barea A, Leckner B (2010) Modeling of biomass gasification in fluidized bed. Prog Energy Combust Sci 36(4):444–509

    Article  Google Scholar 

  • Gomez-Barea A, Ollero P, Leckner B (2008) Research on modeling of FB biomass gasification units. Workshop on biomass gasification. Available at: http://www.mam.gov.tr/bigpower/fullpaperS/02.pdf

  • Grammelis P et al (2009) Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 88(1):195–205

    Article  Google Scholar 

  • Hallgren A, Andersson LA, Bjerle I (1993) High temperature gasification of biomass in an atmospheric entrained flow reactor. Chapter in advances in thermochemical biomass conversion. pp 338–349

    Google Scholar 

  • Haley CAC (1990) Energy recovery from burning municipal solid wastes: a review. Resour Conserv Recy 4:77–103

    Google Scholar 

  • Herguido J, Corella J, Gonzalez-Saiz J (1992) Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Ind Eng Chem Res 31:1274–1282

    Google Scholar 

  • Jenkins B et al (1998) Combustion properties of biomass. Fuel Process Technol 54(1–3):17–46

    Article  Google Scholar 

  • Jensen PA, Joergensen KH (1996) Tar reduction by partial oxidation. In: Chartier P et al (eds) Biomass for energy and environment. Proceedings of 9th European Bioenergy Conference, vol 2. Pergamon, pp 1371–1375

    Google Scholar 

  • Jung CH, Matsuto T, Tanaka N (2006) Flow analysis of metals in a municipal solid waste management system. Waste Manag 26(12):1337–1348

    Article  Google Scholar 

  • Juniper Rating Gasification Report (2009) Available at: www.juniper.co.uk

  • Katheklakis IE et al (1990) Effect of freeboard residence time on the molecular mass distributions of fluidized bed pyrolysis tars. Fuel 69(2):172–176

    Article  Google Scholar 

  • Kaufman-Rechulski MD, Schildhauer TJ, Biollaz SMA (2011) Organic sulfur compounds in the producer gas from wood and grass gasification. In: 19th European biomass conference and exhibition, pp 1625–1627

    Google Scholar 

  • Kaufman Rechulski MD et al (2014) Sulfur containing organic compounds in the raw producer gas of wood and grass gasification. Fuel 128:330–339. Available at: http://dx.doi.org/10.1016/j.fuel.2014.02.038

  • Kinoshita CM, Wang Y, Zhou J (1994) Tar formation under different biomass gasification conditions. J Anal and Appl Pyrol 29(2):169–181

    Google Scholar 

  • Kunii D, Levenspiel O (1968) Bubbling bed model for kinetic processes in fluidized beds. Ind Eng Chem Process Des Dev 7(4):481–492

    Article  Google Scholar 

  • Kunii D, Levenspiel O (1991) Fluidization Engineering, 2nd edn, Butterworth-Heinemann, Stoneham

    Google Scholar 

  • Kurkela E, Ståhlberg P, Laatikainen J, Simell P (1993) Development of simplified IGCC-processes for biofuels: supporting gasification research at VTT. Bioresour Technol 46(1–2):37–47

    Google Scholar 

  • Li C, Suzuki K (2009) Tar property, analysis, reforming mechanism and model for biomass gasification-an overview. Renew Sustain Energy Rev 13(3):594–604

    Article  Google Scholar 

  • Li J, Nakazato T, Kato K (2004) Effect of cohesive powders on the elutriation of particles from a fluid bed. Chem Eng Sci 59(13):2777–2782

    Article  Google Scholar 

  • Li D et al (2013) Evolution of organic sulfur in the thermal upgrading process of Shengli lignite. Energy Fuels 27(6):3446–3453

    Article  Google Scholar 

  • Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95(1):95–101, October, ISSN:0960-8524

    Google Scholar 

  • Marsh R et al (2007) Physical and thermal properties of extruded refuse derived fuel. Fuel Process Technol 88(7):701–706

    Article  Google Scholar 

  • Materazzi M et al (2014) Tar evolution in a two stage fluid bed–plasma gasification process for waste valorization. Fuel Process Technol 128:146–157. Available at: http://www.sciencedirect.com/science/article/pii/S037838201400280X. Accessed 7 Sept 2015

  • Mettanant V, Basu P, Butler J (2009) Agglomeration of biomass fired fluidized bed gasifier and combustor. Can J Chem Eng 87(5):656–684

    Article  Google Scholar 

  • Miller RS, Bellan J (1997) A generalized biomass pyrolysis model based on superimposed cellulose, hemicelluloseand liqnin kinetics. Combust Sci Technol 126(1–6):97–137

    Google Scholar 

  • Milne TA, Evans RJ (1998) Biomass gasifier “ tars”: their nature, formation, and conversion. Constraints (November), p.v. Available at: http://www.osti.gov/energycitations/servlets/purl/3726-YVZLLq/webviewable/

  • Mokrzycki E, Uliasz-Bochenczyk A (2003) Alternative fuels for the cement industry. Appl Energy 74:95–100

    Google Scholar 

  • Narvaez I et al (1996) Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of the produced raw gas. Ind Eng Chem Res 35(7):2110–2120

    Article  Google Scholar 

  • Niessen W (2002) Combustion and incineration processes. Marcel Dekker, CRC Press, New York

    Google Scholar 

  • Oakey JE, Minchester AJ, Stringer J (1989) Ash deposition in atmospheric pressure fluidised-bed combustion systems. J Inst Energy 62:208–219

    Google Scholar 

  • Öhman M et al (2000) Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy Fuels 14(1):169–178

    Article  Google Scholar 

  • Oka SN (2004) Fluidized bed combustion. Marcel Dekker, New York, pp 331–334, pp 426–428, pp 435

    Google Scholar 

  • Ollila H et al (2006) SEM–EDS characterization of inorganic material in refuse-derived fuels. Fuel 85(17–18):2586–2592. Available at: http://www.sciencedirect.com/science/article/pii/S0016236106001815. Accessed 7 Sept 2015

  • Palma CF (2013) Model for biomass gasification including tar formation and evolution. Energy Fuels 27(5):2693–2702

    Article  Google Scholar 

  • Park D, Levenspiel O, Fitzgerald TJ (1981) Plume model for large particle fluidized-bed combustors. Fuel 60(4):295–306. Available at: http://www.sciencedirect.com/science/article/pii/0016236181901988. Accessed 7 Sept 2015

  • Rabou LPLM et al (2009) Tar in biomass producer gas, the energy research centre of The Netherlands (ECN) experience: an enduring challenge. Energy Fuels 23(12):6189–6198

    Article  Google Scholar 

  • Rampling TW, Hickey TJ (1988) The laboratory characterization of refuse derived fuel. Warren Spring Laboratory Report No ETSU-B-1161, Crown Copyright

    Google Scholar 

  • Rapagnà S et al (2000) Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 19(3):187–197

    Article  Google Scholar 

  • Saxena S, Jotshi C (1994) Fluidized-bed incineration of waste materials. Prog Energy Combust Sci 20(4):281–324

    Article  Google Scholar 

  • Scala F, Chirone R (2004) Fluidized bed combustion of alternative solid fuels. Exp Thermal Fluid Sci 28(7):691–699. Available at: http://www.sciencedirect.com/science/article/pii/S0894177703001808. Accessed 7 Sept 2015

  • Siedlecki M, De Jong W, Verkooijen AH (2011) Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels—A review. Energies 4:389–434

    Google Scholar 

  • Simell PA, Leppälahti JK, son Bredenberg JB (1992) Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials. Fuel 71(2):211–218

    Google Scholar 

  • Shibagaki G, Nishiyama A (1999) Foster wheeler circulating fluidized bed (CFB) boilers in pulp & paper industries and the recent technology development. Kami Parupu Gijutsu Taimusu/Jpn J Paper Technol 42(5):59–64

    Google Scholar 

  • Struis RPWJ et al (2008) Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. Sci Total Environ 403(1–3):196–206

    Article  Google Scholar 

  • Tchobanoglous G (2003) Solid waste management. In: Environmental engineering, pp 755–888

    Google Scholar 

  • Themelis N (2006) Energy recovery from global waste-to-energy. In: Summer review issue of Waste Management World

    Google Scholar 

  • Visser HJM, van Lith SC, Kiel JH (2008) Biomass ash-bed material interactions leading to agglomeration in FBC. J Energy Res Technol 130(1):011801

    Article  Google Scholar 

  • Vreugdenhil BJ (2010) Alkali distribution for low temperature gasification

    Google Scholar 

  • Werther J et al (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27

    Article  Google Scholar 

  • WRAP (2010) The composition of municipal solid waste in Wales. Final report. Project code: EVA124 -000. Release date May 2010. Research period: May–December 2009. Published May 2010. Available at: http://www.wrapcymru.org.uk/about_wrap_cymru/compositional_report.html. Accessed Nov 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Materazzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Materazzi, M. (2017). Gasification of Waste Derived Fuels in Fluidized Beds: Fundamental Aspects and Industrial Challenges. In: Clean Energy from Waste. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46870-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46870-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46869-3

  • Online ISBN: 978-3-319-46870-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics