Skip to main content

Using Awareness to Promote Richer, More Human-Like Behaviors in Artificial Agents

  • Conference paper
  • First Online:
Autonomous Agents and Multiagent Systems (AAMAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10003))

Included in the following conference series:

Abstract

The agents community has produced a wide variety of compelling solutions for many real-world problems, and yet there is still a significant disconnect between the behaviors that an agent can learn and those that exemplify the rich behaviors exhibited by humans. This problem exists both with agents interacting solely with an environment, as well as agents interacting with other agents. The solutions created to date are typically good at solving a single, well-defined problem with a particular objective, but lack in generalizability.

In this work, we discuss the possibility of using an awareness framework, coupled with the optimization of multiple dynamic objectives, in tandem with the cooperation and coordination concerns intrinsic to multiagent systems, to create a richer set of agent behaviors. We propose future directions of research that may lead toward more-human capabilities in general agent behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agogino, A., Tumer, K.: Entropy based anomaly detection applied to space shuttle main engines. In: IEEE Aerospace Conference (2006)

    Google Scholar 

  2. Athan, T.W., Papalambros, P.Y.: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27, 155–176 (1996)

    Article  Google Scholar 

  3. Barrett, S., Stone, P.: Cooperating with unknown teammates in complex domains: a robot soccer case study of ad hoc teamwork. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 2015

    Google Scholar 

  4. Bloembergen, D., Hennes, D., McBurney, P., Tuyls, K.: Trading in markets with noisy information: an evolutionary analysis. Connection Sci. 27(3), 253–268 (2015)

    Article  Google Scholar 

  5. Brézillon, P.: Context in artificial intelligence: I. a survey of the literature. Comput. Artif. Intell. 18, 321–340 (1999)

    MATH  Google Scholar 

  6. Brys, T., Harutyunyan, A., Vrancx, P., Taylor, M.E., Kudenko, D., Nowé, A.: Multi-objectivization of reinforcement learning problems by reward shaping. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2315–2322. IEEE (2014)

    Google Scholar 

  7. Brys, T., Taylor, M.E., Nowé, A.: Using ensemble techniques and multi-objectivization to solve reinforcement learning problems. In: ECAI, pp. 981–982 (2014)

    Google Scholar 

  8. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, vol. 5, p. 3 (2010)

    Google Scholar 

  9. Das, I., Dennis, J.E.: A closer look at drawbacks of minimizing weighted sums of objectives for pareto set generation in multicriteria optimization problems. Struct. Optim. 14, 63–69 (1997)

    Article  Google Scholar 

  10. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  11. Edgeworth, F.Y., Psychics, M.: An Essay on the Application of Mathematics to Moral Sciences. C. Kegan Paul and Company, London (1881)

    Google Scholar 

  12. Elidrisi, M., Johnson, N., Gini, M.: Fast learning against adaptive adversarial opponents. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, November 2012, Valencia, Spain (2012)

    Google Scholar 

  13. Erickson, T.: Some problems with the notion of context-aware computing. Commun. ACM 45(2), 102–104 (2002)

    Article  Google Scholar 

  14. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1), 39–76 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feil-Seifer, D.: Distance-based computational models for facilitating robot interaction with children. J. Hum. Rob. Interact. 1(1), 55–77 (2012)

    Article  Google Scholar 

  16. Flener, P., Pearson, J., Ågren, M., Garcia-Avello, C., Celiktin, M., Dissing, S.: Air-traffic complexity resolution in multi-sector planning. J. Air Transp. Manage. 13(6), 323–328 (2007)

    Article  Google Scholar 

  17. Ghosh, A., Sen, S.: Agent-based distributed intrusion alert system. In: Sen, A., Das, N., Das, S.K., Sinha, B.P. (eds.) IWDC 2004. LNCS, vol. 3326, pp. 240–251. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30536-1_28

    Chapter  Google Scholar 

  18. Giagkiozis, I., Fleming, P.J.: Methods for multi-objective optimization: an analysis. Inform. Sci. 293, 338–350 (2015)

    Article  MathSciNet  Google Scholar 

  19. Hernandez-Leal, P., Munoz de Cote, E., Sucar, L.E.: A framework for learning and planning against switching strategies in repeated games. Connection Sci. 26(2), 103–122 (2014)

    Article  Google Scholar 

  20. Holmes Jr., O.W.: U.S. supreme court opinion: Schenck v. United States (1919)

    Google Scholar 

  21. Jeyadevi, S., Baskar, S., Babulal, C.K., Iruthayarajan, M.W.: Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Int. J. Electr. Power Energ. Syst. 33(2), 219–228 (2011)

    Article  Google Scholar 

  22. Kaluža, B., Kaminka, G.A., Tambe, M.: Detection of suspicious behavior from a sparse set of multiagent interactions. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 955–964. International Foundation for Autonomous Agents and Multiagent Systems (2012)

    Google Scholar 

  23. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  24. Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., Shepherd, M.: CYC: toward programs with common sense. Commun. ACM 33(8), 30–49 (1990)

    Article  Google Scholar 

  25. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimization: new insights. Struct. Multi. Optim. 41, 853–862 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26, 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCarthy, J.: Programs with Common Sense. Defense Technical Information Center, Panama (1963)

    Google Scholar 

  28. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. McCarthy, J.: Artificial intelligence, logic and formalizing common sense. In: Thomason, R.H. (ed.) Philosophical logic and artificial intelligence, pp. 161–190. Springer, Netherlands (1989)

    Chapter  Google Scholar 

  30. Messac, A., Hattis, P.D.: Physical programming design optimization for high speed civil transport (HSCT). J. Aircr. 33(2), 446–449 (1996)

    Article  Google Scholar 

  31. Pareto, V.: Manuale di Economia Politica. Piccola Biblioteca Scientifica, Societa Editrice Libraria (1906)

    Google Scholar 

  32. Pareto, V.: Manual of Political Economy. MacMillan Press Ltd., London (1927)

    Google Scholar 

  33. Pěchouček, M., Mařík, V.: Industrial deployment of multi-agent technologies: review and selected case studies. Auton. Agent. Multi-Agent Syst. 17(3), 397–431 (2008)

    Article  Google Scholar 

  34. Penn, R., Friedler, E., Ostfeld, A.: Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems. Water Res. 47(15), 5911–5920 (2013)

    Article  Google Scholar 

  35. Powe, L.A.: Searching for the false shout of fire. Const. Comment. 19, 345 (2002)

    Google Scholar 

  36. Sato, H.: Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 645–652. ACM (2014)

    Google Scholar 

  37. Sato, H.: MOEA/D using constant-distance based neighbors designed for many-objective optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 2867–2874. IEEE (2015)

    Google Scholar 

  38. Sen, S., Sekaran, M., Hale, J.: Learning to coordinate without sharing information. In: AAAI, pp. 426–431 (1994)

    Google Scholar 

  39. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artif. Intell. 155(1), 41–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shaw, R.: Don’t panic: behaviour in major incidents. Disaster Prev. Manag. Int. J. 10(1), 5–10 (2001)

    Article  Google Scholar 

  41. Tambe, M.: Electric elves: what went wrong and why. AI Mag. 29(2), 23 (2008)

    Google Scholar 

  42. Tambe, M., Scerri, P., Pynadath, D.V.: Adjustable autonomy for the real world. J. Artif. Intell. Res. 17(1), 171–228 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforcement learning. In: Proceedings of the 7th International Joint Conference on Autonomous Agents And Multiagent Systems, vol. 1, pp. 283–290. International Foundation for Autonomous Agents and Multiagent Systems (2008)

    Google Scholar 

  44. Taylor, M.E., Stone, P.: An introduction to intertask transfer for reinforcement learning. AI Mag. 32(1), 15 (2011)

    Google Scholar 

  45. Thrun, S., Mitchell, T.M.: Lifelong robot learning. In: Steels, L. (ed.) The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. 144, pp. 165–196. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  46. Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, p. 255. ACM (2007)

    Google Scholar 

  47. Wang, Z., Boularias, A., Mülling, K., Peters, J.: Balancing safety and exploitability in opponent modeling. In: AAAI (2011)

    Google Scholar 

  48. Wendland, M.F.: The calumet tragedy + death of a city in Northern Michigan, 1913–1914. Am. Heritage 37(3), 39 (1986)

    Google Scholar 

  49. Xu, H., Zhang, Z., Alipour, K., Xue, K., Gao, X.Z.: Prototypes selection by multi-objective optimal design: application to a reconfigurable robot in sandy terrain. Ind. Rob. Int. J. 38(6), 599–613 (2011)

    Article  Google Scholar 

  50. Yang, R., Ford, B., Tambe, M., Lemieux, A.: Adaptive resource allocation for wildlife protection against illegal poachers. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, pp. 453–460. International Foundation for Autonomous Agents and Multiagent Systems (2014)

    Google Scholar 

  51. Yliniemi, L., Agogino, A.K., Tumer, K.: Evolutionary agent-based simulation of the introduction of new technologies in air traffic management. In: Genetic and Evolutionary Computation Conference (GECCO) (2014)

    Google Scholar 

  52. Yliniemi, L., Agogino, A.K., Tumer, K.: Multirobot coordination for space exploration. AI Mag. 4(35), 61–74 (2014)

    Google Scholar 

  53. Yliniemi, L., Tumer, K.: Multi-objective multiagent credit assignment through difference rewards in reinforcement learning. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 407–418. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13563-2_35

    Google Scholar 

  54. Yliniemi, L., Tumer, K.: PaCcET: an objective space transformation to iteratively convexify the Pareto front. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 204–215. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13563-2_18

    Google Scholar 

  55. Yliniemi L., Tumer, K.: Complete coverage in the multi-objective PaCcET framework. In: Silva, S. (ed.) Genetic and Evolutionary Computation Conference (2015)

    Google Scholar 

  56. Yliniemi, L., Wilson, D., Tumer, K.: Multi-objective multiagent credit assignment in NSGA-II using difference evaluations. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 1635–1636. International Foundation for Autonomous Agents and Multiagent Systems (2015)

    Google Scholar 

  57. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. Comput. Eng. 3242(103) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logan Yliniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yliniemi, L., Tumer, K. (2016). Using Awareness to Promote Richer, More Human-Like Behaviors in Artificial Agents. In: Osman, N., Sierra, C. (eds) Autonomous Agents and Multiagent Systems. AAMAS 2016. Lecture Notes in Computer Science(), vol 10003. Springer, Cham. https://doi.org/10.1007/978-3-319-46840-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46840-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46839-6

  • Online ISBN: 978-3-319-46840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics