Skip to main content

Potentiality of Earthworms as Bioremediating Agent for Nanoparticles

  • Chapter
  • First Online:
Nanoscience and Plant–Soil Systems

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

Abstract

Our current understanding of the potential impact of nanomaterials and their potentiality to remediate/nullify their toxic forms by naturally available scavenger is limited. This article presents the mechanism of uptake of nanoparticles (NPs) and their intracellular communication by coelomic cells of earthworms to reduce their toxic and environmental impact in soil system. Earthworm can “biotransform” or “biodegrade” or “bioaccumulate” NPs in their tissues, released in the form of aggregates in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absalon L, Charalambous N, Holm A, Jørgensen M (2015) An assessment of the delayed effects of exposure to CuO nanoparticles and CuCl2 spiked sediment on mortality and burrowing behaviour of the freshwater annelid Tubifex tubifex. Environmental biology project, Roskilde University, RUC, Denmark

    Google Scholar 

  • Adamowicz A, Wojtaszek J (2001) Morphological and phagocytotic activity of coelomocytes in Dendrobaena veneta (Lumbricidae). Zoologica Poloniae 46:91–104

    Google Scholar 

  • Affar EB, Dufour M, Poirier GG, Nadeau D (1998) Isolation, purification and partial characterization of chloragocytes from the earthworm species Lumbricus terrestris. Mol Cell Biochem 185:123–133

    Article  CAS  PubMed  Google Scholar 

  • Alahdadi I, Behboudi F (2015) The effects of CuO and ZnO nanoparticles on survival, reproduction, absorption overweight and accumulation in Eisenia foetida earthworm tissues in two substrates. Int J Environ Res 9(1):35–42

    CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Chitrani BD, Ghazani AA, Chan WCD (2006) Determining the size and shape dependence of gold nanoparticles uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  • Cooper EL, Stein EA (1981) Invertebrate blood cells. Academic, London, pp 75–140

    Google Scholar 

  • Cossarizza A, Cooper EL, Suzuki MM, Salvioli S, Capri M, Gri G, Quaglino D, Franeschi C (1996) Earthworm leucocytes that are not phagocytic and cross-react with several human epitopes can kill human tumor cell lines. Exp Cell Res 224:174–182

    Article  CAS  PubMed  Google Scholar 

  • Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH (2011) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxiciology 6:186–195

    Article  Google Scholar 

  • Dales RP, Kalac Y (1992) Phagocytic defense by the earthworm Eisenia fetida against certain pathogenic bacteria. Comp Biochem Physiol 101:487–490

    Article  Google Scholar 

  • Franc NC, Diarcq J-L, Lagueux M, Hoffmann J, Ezekowitz RAB (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443

    Article  CAS  PubMed  Google Scholar 

  • Gomes SI, Hansen D, Scott-Fordsmand JJ, Amorim MJ (2015) Effects of silver nanoparticles to soil invertebrates: oxidative stress biomarkers in Eisenia fetida. Environ Pollut 199:49–55

    Article  CAS  PubMed  Google Scholar 

  • Gomes-da-Silva LC, Fonseca NA, Moura V, Pedrosa de Lima MC, Simbes S, Moreira JN (2012) Lipid-based nanoparticles or siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res 45:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Kushwaha T, Yadav S (2014a) Earthworm coelomocytes as nano-scavenger for ZnO NPs. Nanoscale Res Lett 9:259–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kushwaha T, Yadav S (2014b) Toxicity of ZnO nanoparticles on earthworm Eisenia fetida (Savigny, 1826) and investigating its potential as biotransforming agent. In Pavlicek T, Cardet P, Almeida MT, Pascoal C, Cassio F (eds) Advances in earthworm taxonomy-VI (Annelida: Oligochaeta), Proceedings of 6th international Oligochaeta taxonomy meeting, Portugal. Kasparek, Heidelberg, pp 158–171

    Google Scholar 

  • Gupta S, Kushwah T, Vishwakarma A, Yadav S (2015) Optimization of ZnO-NPs to investigate their safe application by assessing their effect on soil nematode Caenorhabditis elegans. Nanoscale Res Lett 10:303313. doi:10.1186/s11671-015-1010-4

    Article  Google Scholar 

  • Hamed SS, Kauchke E, Cooper EL (2002) Cytochemical properties of earthworm coelomocytes enriched by Percoll. In: Beschin A, Bilej M, Cooper EL (eds) A new model for analyzing antimicrobial properties with biomedical applications. IOS Press, Ohmsha, Tokyo, pp 29–37

    Google Scholar 

  • Hayashi Y, Engelmann P, Foldjerg R, Szabo M, Pollak E, Molnar L, Autru H, Sutherland DS, Scott-Fordsmand J, Heckmann LH (2012) Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 46:4166–4173

    Article  CAS  PubMed  Google Scholar 

  • Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2010) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20:226–233

    Article  PubMed  Google Scholar 

  • Hillyer JF, Albrecht RM (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 90:1927–1936

    Article  CAS  PubMed  Google Scholar 

  • Hu CW, Li M, Cul YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Chem 42:586–591

    Article  CAS  Google Scholar 

  • Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions and cell type. Environ Toxicol Chem 33:481–492

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. doi:10.1897/08-090.1

    Google Scholar 

  • Kreyling WG, Semmier-Behnke M, Moller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    Article  CAS  Google Scholar 

  • Lapied E, Nahmani JY, Moudilou E, Cjaurand P, Labille J, Rosae J, Exbrayat JM, Oughton DJ, Joner EJ (2011) Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ Int 37:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Li LZ, Zhou DM, Peijnenburg WJ, van Gestel CA, Jin SY, Wang YJ, Wang P (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and sub cellular fractionation of Zn. Environ Int 37:1098–1104

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Qian J, Zhou H, Gan Q, Tang W, Lu J, Yuan Y, Liu C (2011) In vitro toxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed 6:1899–9001

    Google Scholar 

  • Lynch I, Salvat A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547. doi:10.1038/nnano.2009.248

    Article  CAS  PubMed  Google Scholar 

  • Mabire F, Audebert R, Quivoron C (1984) Flocculation properties of some water-soluble cationic copolymers toward silica suspensions: a semi-quantitative interpretation of the role of molecular weight and cationicity through a ‘patchwork’ model. J Colloid Interface Sci 97:120–136

    Article  CAS  Google Scholar 

  • McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI (2011) Reproductive and behavioral responses of earthworms exposed to nano-sized titanium oxide in soil. Environ Toxicol 31:184–193

    Article  Google Scholar 

  • Milochau A, Lassegues M, Valembois P (1997) Purificaton, characterization and activities of two hemolytic and antibacterial proteins from coelomic fluid of the annelid Eisenia fetida andrei. Biochim Biophys Acta 1337:123–132

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 3:578–592

    Google Scholar 

  • Murata M, Tanaka Y, Mizukagi T, Ebitani K, Kaneda K (2005) Palladium-platinum bimetallic nanoparticle catalysts using dendron assembly for selective hydrogenation of dienes and their application to thermophilic system. Chem Lett 34:272–273

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:825–839

    Article  Google Scholar 

  • Parry MJ (1975) Evidence of mitotic divisions of coelomocytes in the normal, wounded and grafted earthworm Eisenia fetida. Experientia 32:449–451

    Article  Google Scholar 

  • Patwa A, Thiery A, Lombard F, Lilley MKS, Boisset C, Bramard J-F, Bottero J-Y, Barthelemy P (2015) Accumulation of nanoparticles in jellyfish mucus: a bio-inspired route to decontamination of nano-waste. Sci Rep. doi:10.1038/screp11387

    PubMed  PubMed Central  Google Scholar 

  • Petkovic J, Zegura B, Stevanovic M, Dmovsek N, Uskokvic D, Novak S, Filipic M (2011) DNA damage and alterations in expressions of DNA damage responsive genes induced by TiO2 nanoparticles in human hepatoma HepG2 cells. Nanotoxicology 5:341–353

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG (2002) Evidence that ultrafine titanium oxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblast. Environ Health Perspect 110:797–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranzelli-Cain R, Kaloustian KV (1995) Evidence for the involvement of opioid peptides in phagocytosis, conformation, granulation and aggregation of immunocompetent Lumbricus terrestris amoebocytes. Comp Biochem Physiol 111:205–211

    Google Scholar 

  • Schlich K, Terytze K, Hund-Rinke K (2012) Effect of TiO2 nanoparticles in earthworm reproduction test. Environ Sci Eur 24:5. doi:10.1186/2190-4715-24-5

    Article  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5. doi:10.1186/1477-3155-12-5

    Article  Google Scholar 

  • Simonet BM, Valcarcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21

    Article  CAS  PubMed  Google Scholar 

  • Stein EA, Cooper EL (1981) Cytochemical observations of coelomocytes the earthworm, Lumbricus terrestris. Dev Comp Immunol 5:15–25

    Article  Google Scholar 

  • Stürzenbaum SR, Höckner M, Panneerselvam A, Levitt J, Bouillard J-S, Taniguchi S, Dailey L-A, Ahmad KR, Rosca EV, Thanou M, Suhling K, Zayats AV, Green M (2013) Biosynthesis of luminescent quantum dots in an earthworm. Nat Nanotechnol 8:57–60

    Article  PubMed  Google Scholar 

  • Tiede K, Tear SP, David H, Boxall AB (2009) Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res 43:3335–3343

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S, Seijo M, Laguecir A, Stoll S (2006) Nanoparticle adsorption on a week polyelectrolyte. Stiffness, pH, charge mobility and ionic concentration effects investigated by Monte Carlo simulations. J Phys Chem B 110:20954–20964

    Article  CAS  PubMed  Google Scholar 

  • Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM (2010) Evidence for bioavailability of an nanoparticles from soil and biodistribution with in earthworms (Eisenia fetida). Environ Sci Technol 44:8308–8313

    Article  CAS  PubMed  Google Scholar 

  • Valembois P, Roch P, Lassegues M, Cassand P (1982) Antibacterial activity of the hemolytic system from the earthworm Eisenia fetida andrei. J Invertebr Pathol 40:21–27

    Article  Google Scholar 

  • Valembois P, Roch P, Lassegues M (1988) Evidence of plasma clotting system in earthworms. J Invertebr Pathol 51:221–228

    Article  CAS  Google Scholar 

  • Van der Ploeg MJC, Baveco JM, Van der Hout A, Bakker R, Rietjens IM, Van den Brink NW (2010) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159:198–203

    Article  PubMed  Google Scholar 

  • Van der Ploeg MJ, Handy RD, Heckmann LH, Van der Hout A, Van Den Brink NW (2013) C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 7:432–440

    Article  Google Scholar 

  • Ville P, Roch P, Cooper E, Masson P, Narrbomnne J (1995) PCBs increase molecular-related activities (lysosome, antibacterial, hemolysis, proteases) but inhibit macrophage-related functions (phagocytosis, wound healing) in earthworms. J Invertebr Pathol 65:217–224

    Article  CAS  PubMed  Google Scholar 

  • Whitfield Aslund ML, McShane H, Simpson MJ, Simpson AJ, Whalen JK, Hendershot WH, Sunahara GI (2011) Earthworm sublethal responses to titanium oxide nanomaterial in soil detected by H NMR metabolomics. Environ Sci Technol 46:1111–1118

    Article  PubMed  Google Scholar 

  • Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, Shea KJ (2015) Synthetic polymer nanoparticle-polysaccharide interactions: a systematic study. J Am Chem Soc 134:2681–2690

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support of the Department of Biotechnology, Ministry of Science and Technology, Govt. of India, New Delhi, to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yadav, S. (2017). Potentiality of Earthworms as Bioremediating Agent for Nanoparticles. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_8

Download citation

Publish with us

Policies and ethics