Skip to main content

Nanomaterial Effects on Soil Microorganisms

  • Chapter
  • First Online:
Book cover Nanoscience and Plant–Soil Systems

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

Abstract

Nanomaterials like other types of industrial products may enter the environment through intentional and unintentional releases. It has been demonstrated using different methodologies, different indicators, and natural soils, which NMs could have an impact on microbial activities, abundances, and diversity. Effects on soil beneficial activities such as microbial N2 cycle, symbiotic relations (e.g., AMF), Fe metabolism (siderophores), and production of antifungal compounds are particularly foreboding for microbial-dependent crop production. However, the toxic effects on microbial community are highly dependent on both the NMs considered and the soil properties. In fact, inorganic NMs (metal, metal oxide NPs) may have a greater toxic potential than organic NMs (fullerenes and CNTs) to soil microorganisms. The soil properties seem to play a key role for the bioavailability of NMs, especially the clay and organic matter content. Microbiologists strongly need to take more into consideration the physicochemical characteristics of the soil used in the experiments (texture, organic matter content, pH, etc.) and to compare the ecotoxicity of NMs in a range of different soils. The identification of soil parameters controlling the bioavailability of NMs is fundamental for a better environmental risk assessment. That being said, harnessing the full benefits of nanotechnology without degrading the ecosystem would require more studies conducted in real environmental conditions (soil) and continuous investigation into how less biotoxic NMs can be manufactured based on modifications on surface properties that would reduce the release of toxic ions or, possibly, tailoring the toxicity toward specific organisms, much like “narrow-spectrum” antibiotics. It is important to know that more attention is classically given to soil bacterial communities, despite the crucial role of fungal communities in energy flow and nutrient transfer in terrestrial ecosystems. New insights regarding the broad distribution and abundance of archaea in soils and oceans imply that they also contribute to global energy cycles, especially nitrogen cycle where ammonia-oxidizing archaea play a key role in nitrification. What is known on NM toxicity from in vitro studies using bacterial strains may not be extrapolated to archaeal and fungal communities. Thus, we must consider the response of archaeal and fungal communities to NM contamination, in order to have a better assessment of NM ecotoxicity in soils. For this, we need to collect an exhaustive data about microbial communities. Fortunately, modern tools and techniques have been developed in this field such as atomic force microscopy, metagenomics, and other molecular methods. They can help researchers to find more precise information comparing current tool and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard P, Darnajoux R, Phalyvong K, Bellenger JP (2013) Effects of tungsten and titanium oxide nanoparticles on the diazotrophic growth and metals acquisition by Azotobacter vinelandii under molybdenum limiting condition. Environ Sci Technol 47:2061–2068

    Article  CAS  PubMed  Google Scholar 

  • Alsteenns D, Verbelen C, Dague E, Raze D, Baulard AR, Dufrene YF (2008) Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch Eur J Physiol 456:117–125

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • An YJ, Kim M (2009) Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere 74:654–659

    Article  CAS  PubMed  Google Scholar 

  • Arnaout CL, Gunsch CK (2012) Impacts of silver nanoparticle coating on the nitrification potential of Nitrosomonas europaea. Environ Sci Technol 46:5387–5395

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO2, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Peralta-Videa JR (2012) Comparative toxicity assessment of CeO2 and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: use of advanced microscopic and spectroscopic techniques. J Hazard Mater 241:379–386

    Article  PubMed  CAS  Google Scholar 

  • Beckmann MA, Venkataraman S (2006) Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy 106:695–702

    Article  CAS  PubMed  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  CAS  PubMed  Google Scholar 

  • Berka J, Chen YJ, Leamon JH, Lefkowitz S et al (2010) Bead emulsion nucleic acid amplification. USA Patent 7842457B2

    Google Scholar 

  • Bing-Ru L, Guo-Mei J, Jian C, Gang W (2006) A review of methods for studying microbial diversity in soils. Pedosphere 16:18–24

    Article  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Caldwell BA (2005) Enzyme activities as a component of soil biodiversity: a review. Pedobiologia 49:637–644

    Article  CAS  Google Scholar 

  • Caruccio N (2011) Preparation of next-generation sequencing libraries using Nextera technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol Biol 733:241–255

    Article  CAS  PubMed  Google Scholar 

  • Chen MW, Yang ZW, Wu HM, Pan X, Xie XB, Wu CB (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomed 6:2873–2877

    CAS  Google Scholar 

  • Cherchi C, Gu A (2010) Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environ Sci Technol 44:8302–8307

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Hu Z (2009) Nitrification inhibition by silver nanoparticles. Water Sci Technol 59:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569–575

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300:286–290

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK, Shah V (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS One 7:e42663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S et al (2013) Low concentrations of silver nanoparticles in sewage sludge cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper D, Dumas E, Carlini L, Gao C et al (2010) Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria. Environ Sci Technol 44:1464–1470

    Article  CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Brink NVD, Nickle C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44:2720–2764

    Article  CAS  Google Scholar 

  • Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biol Biochem 30:983–993

    Article  CAS  Google Scholar 

  • Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Dague E (2011) Assembly of live microorganisms on microstructured PDMS stamps by convective/capillary deposition for AFM bioexperiments. Nanotechnology 22:395102

    Article  CAS  PubMed  Google Scholar 

  • Dague E, Alsteens D, Latge J, Verbelen C, Raze D, Baulard AR, Dufrene YF (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    Article  CAS  PubMed  Google Scholar 

  • Da Silva A, Teschke O (2003) Effect of the antimicrobial peptide PGLa on live Escherichia coli. Biochem Biophys Acta Mol Cell Res 1643:95–103

    Article  CAS  Google Scholar 

  • Di Bella JM, Bao Y, Gloor GB, Burton JP, Reid G (2013) High throughput sequencing methods and analysis for microbiome research. J Microbiol Methods 95:401–414

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 54:889–904

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE et al (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9:271–278

    Google Scholar 

  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2008) Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24:4944–4951

    Google Scholar 

  • Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR (2009) Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. Langmuir 25:6968–6976

    Article  CAS  PubMed  Google Scholar 

  • Dorobantu LS, Goss GG, Burrell RE (2012) Atomic force microscopy: a nanoscopic view of microbial cell surfaces. Micron 43:1312–1322

    Article  CAS  PubMed  Google Scholar 

  • Du W, Sun Y, Ji R et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:S103–S108

    Article  Google Scholar 

  • Dubrovin EV, Voloshin AG, Kraevsky SV, Ignatyuk TE, Abramchuk SS et al (2008) Atomic force microscopy investigation of phage infection of bacteria. Langmuir 24:13068–13074

    Article  CAS  PubMed  Google Scholar 

  • Dufrene YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufrene YF (2004) Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol 2:451–460

    Article  CAS  PubMed  Google Scholar 

  • Dufrene YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Dunbar J et al (2000) Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66:2943–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupres V, Alsteens D, Andre G, Verbelen C, Dufrene YF (2009) Fishing single molecules on live cells. Nanotoday 4:262–268

    Article  CAS  Google Scholar 

  • Eaton P, Fernandes JC (2008) Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  PubMed  CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43:7285–7290

    Article  CAS  PubMed  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  PubMed  Google Scholar 

  • Fakruddin MD, Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Biol Sci) 42:19–33

    Google Scholar 

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. Sci Total Environ 466–467:503–512

    Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Watson JL, Goodman J, Dimkpa CO et al (2013) Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads? Microbiol Res 168:91–98

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  PubMed  Google Scholar 

  • Fernandes JC, Eaton P, Gomes AM, Pintado ME, Malcata FX (2009) Study of the antibacterial effect of chitosan on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy 109:854–860

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  • Foti M, Sorokin DY, Lomans B, Mussman M et al (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francius G, Alsteens D, Dupres V, Lebeer S, De Keersmaecker S et al (2009) Stretching polysaccharides on live cells using single molecule force spectroscopy. Nat Protoc 4:939–946

    Article  CAS  PubMed  Google Scholar 

  • Froehlich T, Heindl D, Roesler A (2010) Miniaturized high-throughput nucleic acid analysis. European Patent 2224014A1

    Google Scholar 

  • Fukuma T, Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87:66–70

    Article  CAS  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W et al (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garbeva P, Van Veen JA, Vvan Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Ge YG, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 8:6749–6758

    Article  CAS  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles As affected by pH and natural organic matter. Langmuir 24:12385–12391

    Article  CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (2009) Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037

    Article  CAS  Google Scholar 

  • Gillespie AW, Farrell RE, Walley FL et al (2011) Glomalin-related soil protein contains nonmycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol Biochem 43:766–777

    Article  CAS  Google Scholar 

  • Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4:8–10

    Article  CAS  Google Scholar 

  • Gohargani J, Ghasemi H (2013) Ecotoxicity of nanomaterials in soil. Ann Biol Res 4:86–92

    Google Scholar 

  • Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C 112:18303–18313

    Article  CAS  Google Scholar 

  • Gurunathan S (2015) Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J Ind Eng Chem 32:282–291

    Article  CAS  Google Scholar 

  • Guzman KA, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Article  PubMed  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, De Aberasturi D, De Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T et al (2012) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31

    Article  CAS  PubMed  Google Scholar 

  • Hansch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558

    Article  CAS  Google Scholar 

  • Hao J, Murphy R, Lim E, Schoonen MAA, Strongin DR (2009) Effects of phospholipid on pyrite oxidation in the presence of autotrophic and heterotrophic bacteria. Geochim Cosmochim Acta 73:4111–4123

    Article  CAS  Google Scholar 

  • Hartmann NB, Skjolding LM, Hansen SF, Kjølholt J, Gottschalck F, Baun A (2014) Environmental fate and behaviour of nanomaterials. The Danish Environmental Protection Agency, Denmark, p 114

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • Helenius J, Heisenberg C, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Article  Google Scholar 

  • Hinsinger P, Glyn Bengough A, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887

    Article  CAS  Google Scholar 

  • Horejs C, Ristl R, Tscheliessnig R, Sleytr UB, Pum D (2011) Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein. J Biol Chem 286:27416–27424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino A, Fujioka K, Oku T, Suga M et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim BC, Sang BI, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photochem Photobiol A Chem 158:111–117

    Article  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA, and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T (2008) Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ Toxicol Chem 27:1904–1914

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11:77–89

    Article  CAS  Google Scholar 

  • Jin L, Son Y, DeForest JL, Kang YJ, Kim W, Chung H (2014) Single-walled carbon nanotubes alter soil microbial community composition. Sci Total Environ 446:533–538

    Article  CAS  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U et al (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Judy JD, McNear DH (2015) Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol. doi:10.1021/acs.est.5b01208

    Google Scholar 

  • Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM (2015) Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ Pollut 206:256–263

    Article  CAS  PubMed  Google Scholar 

  • Kailas L, Ratcliffe EC, Hayhurst EJ, Walker MG, Foster SJ, Hobbs JK (2009) Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 109:775–780

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R et al (2013) Impact of nano and bulk ZrO2, TiO2 particles on soil nutrient contents and PGPR. J Nanosci Nanotechnol 13:678–685

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Rajendran V, Kannan N (2014) Influence of nano and bulk SiO2 and Al2O3 particles on PGPR and soil nutrient contents. Curr Nanosci 10:604–612

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58:169–188

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  PubMed  Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Adam MP (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190:816–822

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Kumar A, Fernandes T, Ayoko GA (2014) Nanomaterials and the environment. J Nanomater. Article ID 528606, pp 4

    Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  CAS  PubMed  Google Scholar 

  • La Storia A, Ercolini D, Marinello F et al (2011) Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol 162:164–172

    Article  PubMed  CAS  Google Scholar 

  • Leckie SE (2005) Methods of microbial community profiling and their application to forest soils. Forest Ecol Manag 220:88–106

    Article  Google Scholar 

  • Li M, Zhu LZ, Lin DH (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Liang ZH, Das A, Hu ZQ (2010) Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res 44:5432–5438

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang Y (2010) Application of AFM in microbiology: a review. Scanning 32:61–73

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Sun T, Zhai YM, Dong SJ (2009) Evaluation of ferricyanide effects on microorganisms with multi-methods. Talanta 78:613–617

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol. doi:10.1155/2012/251364

    Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    Article  CAS  PubMed  Google Scholar 

  • Lu C (2009) Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol Biol Cell 20:891–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7:e30087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maali A, Cardinal T, Treguer-Delapierre M (2003) Intrinsic fluorescence from individual silver nanoparticles. Physica E 17:559–560

    Article  CAS  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  • Maleki Dizaj S, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxides nanoparticles. Mater Sci Eng C 44:278–284

    Article  CAS  Google Scholar 

  • Manzo S, Rocco A, Carotenuto R et al (2010) Investigation of ZnO nanoparticles ecotoxicological effects towards different soil organisms. Environ Sci Pollut Res 18:756–763

    Article  CAS  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • Masrahi A, VandeVoort AR, Arai Y (2014) Effects of silver nanoparticle on soil-nitrification processes. Arch Environ Contam Toxicol 66:504–513

    Article  CAS  PubMed  Google Scholar 

  • McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, Schenk PM (2008) Isolation and analysis of mRNA from environmental microbial communities. J Microbiol Meth 75:172–176

    Article  CAS  Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15:1767–1776

    Article  CAS  PubMed  Google Scholar 

  • Meyer RL, Zhou X, Tang L et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110:1349–1357

    Article  CAS  Google Scholar 

  • Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting rhizobacteria. Dig J Nanomater Biostruct 4:587–592

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    Article  CAS  PubMed  Google Scholar 

  • Nowrousian M (2010) Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell 9:1300–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noy A (2006) Chemical force microscopy of chemical and biological interactions. Surf Interface Anal 38:1429–1441

    Article  CAS  Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA et al (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20:1041–1049

    Article  CAS  Google Scholar 

  • Peyrot C, Wilkinson KJ, Desrosiers M, Sauve S (2014) Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environ Toxicol Chem 33:115–125

    Article  CAS  PubMed  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  CAS  Google Scholar 

  • Pipan-Tkalec Z, Drobne D et al (2010) Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269:198–203

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanoparticles. doi:10.1155/2013/431218

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Radmacher M, Cleveland J, Fritz M, Hansma H, Hansma P (1994) Mapping interaction forces with the atomic-force microscope. Biophys J 66:2159–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radniecki TS, Stankus DP, Neigh A, Nason JA, Semprini L (2011) Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Chemosphere 85:43–49

    Article  CAS  PubMed  Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I et al (eds) Microbes and microbial technology: agricultural and environmental applications. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  PubMed  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  • Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633

    Article  CAS  PubMed  Google Scholar 

  • Roh H, Subramanya N, Zhao FM, Yu CP, Sandt J, Chu KH (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Article  Google Scholar 

  • Rudi K, Zimonja M, Trosvik P, Naes T (2007) Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 120:95–99

    Article  CAS  PubMed  Google Scholar 

  • Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Meth 63:1–19

    Article  CAS  Google Scholar 

  • Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687–695

    Article  CAS  PubMed  Google Scholar 

  • Santimano MC, Kowshik M (2013) Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria. Environ Monit Assess 185:7205–7214

    Article  CAS  PubMed  Google Scholar 

  • Schaer-Zammaretti P, Ubbink J (2003) Imaging of lactic acid bacteria with AFM—elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97:199–208

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TM, Waldron C (2015) Microbial diversity in soils of agricultural landscapes and its relation to ecosystem function. In: Hamilton SK, Doll JE, Robertson GP (eds) The ecology of agricultural landscapes: long-term research on the path to sustainability. Oxford University Press, New York, pp 135–157

    Google Scholar 

  • Shin YJ, Kwak JI, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Article  CAS  PubMed  Google Scholar 

  • Shrestha B, Acosta-Martinez V, Cox SB, Green MJ, Li S, Canas-Carrell JE (2013) An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J Hazard Mater 261:188–197

    Article  CAS  PubMed  Google Scholar 

  • Simon-Deckers A et al (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    Article  CAS  PubMed  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723

    Article  CAS  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  CAS  PubMed  Google Scholar 

  • Soni D, Naoghare PK, Saravanadevi S, Pandey RA (2015) Release, transport and toxicity of engineered nanoparticles. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, Cham, pp 1–48

    Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  CAS  PubMed  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F et al (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  CAS  PubMed  Google Scholar 

  • Thakuria D, Schmidt O, Mac Siurtain M, Egan D, Doohan FM (2009) Importance of DNA quality in comparative soil microbial community structure analyses. Soil Biol Biochem 40:1390–1403

    Article  CAS  Google Scholar 

  • Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    Article  CAS  Google Scholar 

  • Thomas T, Gilbert J, Meyer F (2012) Metagenomics—a guide from sampling to data analysis. Microb Inform Exp 2:1–12

    Article  Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham, pp 37–54

    Google Scholar 

  • Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216:503–509

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:09–122

    Article  Google Scholar 

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut 173:38–46

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Tourinho PS, Van Gestel CAM, Lofts S, Svendsen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44:8308–8313

    Article  CAS  PubMed  Google Scholar 

  • Velegol S, Logan B (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18:5256–5262

    Article  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Wu B (2010) Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 408:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Shen C, Ji Q, An H et al (2009) Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology 20:085102

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Wang J, Xiu ZM, Alvarez PJJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Yang Y, Quensen J, Mathieu J et al (2014) Pyrosequencing reveals higher impact of silver nanoparticles than Ag on the microbial community structure of activated sludge. Water Res 48:317–325

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Walter J, Burke S, Stewart S, Jericho M, Pink D, Beveridge T (2002) Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids Surf B Biointerfaces 23:213–230

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Yuan SJ, Pehkonen SO (2009) AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. Corrosion Sci 51:1372–1385

    Article  CAS  Google Scholar 

  • Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu CP (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90:1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Zeliadt N (2010) http://www.scientificamerican.com/article/silver-beware-antimicrobial-nanoparticles-in-soil-may-harm-plant-life/

  • Zhao C, Brinkhoff T, Burchardt M, Simon M, Wittstock G (2009) Surface selection, adhesion, and retention behavior of marine bacteria on synthetic organic surfaces using self-assembled monolayers and atomic force microscopy. Ocean Dynam 59:305–315

    Article  Google Scholar 

  • Zheng X, Chen YG, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284–7290

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karimi, E., Mohseni Fard, E. (2017). Nanomaterial Effects on Soil Microorganisms. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_5

Download citation

Publish with us

Policies and ethics