Skip to main content

Nanomaterials–Plant–Soil System: Challanges and Threats

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 48))

Abstract

Using products featuring nanomaterials (NMs) results in releasing and disseminating nano-ingredients into environment, including soils. NMs influx into soils primarily originates from three sources: using biosolids, fertilizers, pesticides, and soil additives including NMs as well as NM-involving remediation for soils polluted with organic contaminants and heavy metals. Soils making up a natural environment for plants require an assessment for potential results of NM presence. To date, research into the influence of NMs on plants has been conducted in hydroponic cultures, which fails to reflect actual conditions for plant growth. Learning about interactions between NMs, soil, and a plant proves key for risk assessment of introducing NMs into a food chain and food transfer. On the other hand, nanotechnology solutions within the scope of fertilizing and plant protection seem promising. Available findings concerning NM distribution and behavior in the soil–plant relation are juxtaposed below.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alidoust D, Isoda A (2013) Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A et al (2014) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or me tallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853

    Article  Google Scholar 

  • Arora S, Sharma P, Kumar S et al (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Chesson A, Gardner PT, Wood TJ (1997) Cell wall porosity and available surface area of wheat straw and wheat grain fractions. J Sci Food Agric 75:289–295

    Article  CAS  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E et al (2014a) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanussativus (L). Plant PhysiolBiochem 84:277–285

    CAS  Google Scholar 

  • Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E et al (2014b) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanussativus (L). Plant Physiol Biochem 84:277–285

    Article  CAS  PubMed  Google Scholar 

  • Corredor E, Testillano PS, Coronado M-J et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y et al (2013) Multiwalled carbon nanotubes and c60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y et al (2012) Fullerene-enhanced accumulation of p, p′-DDE in agricultural crop species. Environ Sci Technol 46:9315–9323

    Article  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE et al (2013a) Fate of CuO and ZnO Nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanoparticle Res 14:1–15

    Article  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N et al (2013b) Silver nanoparticles disrupt wheat (Triticumaestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plant 132:491–502

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2013) Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods. Chemosphere 92:131–137

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Cui X, He S et al (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47:9496–9504

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne J, De la Torre RR, Xing B et al (2014) Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol 48:13102–13109

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron x-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  PubMed  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot HortiAgrobot Cluj-Napoca 41:201–207

    CAS  Google Scholar 

  • Jośko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99

    Article  PubMed  Google Scholar 

  • Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232–234:528–537

    Google Scholar 

  • Khodakovskaya MV, Kim B-S, Kim JN et al (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55

    Article  CAS  Google Scholar 

  • Kole C, Kole P, Randunu KM et al (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmallanatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014a) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S et al (2014b) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticumaestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Lee S (2012) Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol 22:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2012) Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol 22:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Lee W-M, An Y-J, Yoon H, Kweon H-S (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  PubMed  Google Scholar 

  • Linglan M, Chao L, Chunxiang Q et al (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122:168–178

    Article  PubMed  Google Scholar 

  • Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122

    Article  CAS  PubMed  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2014a) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S et al (2013) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138

    Article  Google Scholar 

  • Mukherjee A, Pokhrel S, Bandyopadhyay S et al (2014b) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ZnO) in green peas (Pisum sativum L.). Chem Eng J 258:394–401

    Article  CAS  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435

    Article  PubMed  Google Scholar 

  • Peng C, Duan D, Xu C et al (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut Barking Essex 1987(197):99–107

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Rico CM, Barrios AC, Tan W et al (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558

    Article  CAS  Google Scholar 

  • Rico CM, Lee SC, Rubenecia R et al (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). J Agric Food Chem 62:9669–9675

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Morales MI, Barrios AC et al (2013) Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J Agric Food Chem 61:11278–11285. doi:10.1021/jf404046v

    Article  CAS  PubMed  Google Scholar 

  • Schwab F, Zhai G, Kern M et al (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278

    PubMed  Google Scholar 

  • Schwabe F, Schulin R, Limbach LK et al (2013) Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 91:512–520

    Article  CAS  PubMed  Google Scholar 

  • Servin A, Elmer W, Mukherjee A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanoparticle Res 17:1–21

    Article  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  PubMed  Google Scholar 

  • Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanoparticle Res 15:1–12

    Article  Google Scholar 

  • Shi J, Peng C, Yang Y et al (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, Hansen T, McLean JE et al (2015) Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environ Toxicol Chem 34:2116–2125

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R et al (2012) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294–1307

    Article  Google Scholar 

  • Tan X, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E et al (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3:603–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO et al (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  CAS  PubMed  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO et al (2014) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  PubMed  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Yoon S-J, Kwak JI, Lee W-M et al (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z et al (2012) Biotransformation of Ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Peng B et al (2014a) Alginate modifies the physiological impact of CeO2 nanoparticles in corn seedlings cultivated in soil. J Environ Sci 26:382–389

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M et al (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM et al (2014b) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Article  PubMed  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA et al (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit JEM 10:713–717

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z-J, Wang H, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jośko Izabela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Izabela, J., Magdalena, S., Patryk, O. (2017). Nanomaterials–Plant–Soil System: Challanges and Threats. In: Ghorbanpour, M., Manika, K., Varma, A. (eds) Nanoscience and Plant–Soil Systems. Soil Biology, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-46835-8_20

Download citation

Publish with us

Policies and ethics