Skip to main content

Dependency graphs and mod-Gaussian convergence

  • Chapter
  • First Online:
  • 679 Accesses

Abstract

The theory of dependency graphs is a powerful toolbox to prove asymptotic normality. A dependency graph encodes the dependency structure in a family of random variables: roughly we take a vertex for each variable in the family and connect dependent random variables by edges. The idea is that, if the degrees in a sequence of dependency graphs do not grow too fast, then the corresponding variables behave as if independent and the sum of the corresponding variables is asymptotically normal. Precise normality criteria using dependency graphs have been given by Petrovskaya/Leontovich, Janson, Baldi/Rinott and Mikhailov [PL83, Jan88, BR89, Mik91]. These results are black boxes to prove asymptotic normality of sums of partially dependent variables and can be applied in many different contexts. The original motivation of Petrovskaya and Leontovich comes from the mathematical modelisation of cell populations [PL83]. On the contrary, Janson was interested in random graph theory: dependency graphs are used to prove central limit theorems for some statistics, such as subgraph counts, in G(n, p) [BR89, Jan88, JŁR00]; see also [Pen02] for applications to geometric random graphs. The theory has then found a field of application in geometric probability [AB93, PY05, BV07]. More recently it has been used to prove asymptotic normality of pattern counts in random permutations [Bón10, HJ10]. Dependency graphs also generalise the notion of m-dependence [HR48, Ber73], widely used in statistics [Das08].

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. F. Avram and D. Bertsimas. On central limit theorems in geometrical probability. Ann. Appl. Prob., pages 1033–1046, 1993.

    Google Scholar 

  2. R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for Poisson approximations: the Chen-Stein method. Ann. Prob., pages 9–25, 1989.

    Google Scholar 

  3. N. Alon and J. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, 3rd edition, 2008.

    Google Scholar 

  4. K. Berk. A central limit theorem for m-dependent random variables with unbounded m. Ann. Probab., 1(2):352–354, 1973.

    Google Scholar 

  5. B. Bollobás. Modern graph theory, volume 184 of Graduate texts in mathematics. Springer-Verlag, 1998.

    Google Scholar 

  6. M. Bóna. On three different notions of monotone subsequences. In Permutation Patterns, volume 376 of London Math. Soc. Lecture Note Series, pages 89–113. Cambridge University Press, 2010.

    Google Scholar 

  7. C. W. Borchardt. Über eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. Journal für die Reine und angewandte Mathematik, 1860(57):111–121, 1860.

    Article  MathSciNet  Google Scholar 

  8. P. Baldi and Y. Rinott. On normal approximations of distributions in terms of dependency graphs. Ann. Probab., 17(4):1646–1650, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Bárány and V. Vu. Central limit theorems for Gaussian polytopes. Ann. Probab., 35(4):1593–1621, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Chen and Q.-M. Shao. Normal approximation under local dependence. The Annals of Probability, 32(3): 1985–2028, 2004.

    Google Scholar 

  11. A. DasGupta. Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. Springer-Verlag New York, 2008.

    MATH  Google Scholar 

  12. H. Döring and P. Eichelsbacher. Moderate Deviations via Cumulants. Journal of Theoretical Probability, 26(2): 360–385, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Erdös and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, 10(2):609–627, 1975.

    MathSciNet  MATH  Google Scholar 

  14. V. Féray, P.-L. Méliot, and A. Nikeghbali. Mod-φ convergence, II: Estimates of the speed of convergence and local limit theorems. In preparation, 2016.

    MATH  Google Scholar 

  15. P. Hitczenko and S. Janson. Asymptotic normality of statistics on permutation tableaux. Contemporary Math., 520:83–104, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Hoeffding and H. Robbins. The central limit theorem for dependent random variables. Duke Math. J., 15(3):773–780, 1948.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Janson. Normal Convergence by Higher Semiinvariants with Applications to Sums of Dependent Random Variables and Random Graphs. Ann. Probab., 16(1):305–312, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Janson. Large deviations for sums of partly dependent random variables. Random Structures & Algorithms, 24(3):234–248, 2004.

    Google Scholar 

  19. S. Janson, T. Łuczak, and A. Ruciński. Random graphs, volume 45 of Wiley Series in Discrete Mathematics and Optimization. Wiley-Interscience, 2000.

    Google Scholar 

  20. V.P. Leonov and A.N. Shiryaev. On a method of calculation of semi-invariants. Theory Prob. Appl., 4:319–329, 1959.

    Article  MATH  Google Scholar 

  21. V. G. Mikhailov. On a Theorem of Janson. Theory of Probability & Its Applications, 36(1):173–176, 1991.

    Google Scholar 

  22. M. Penrose. Random Geometric graphs, volume 5 of Oxford studies in probability. Oxford University Press, 2002.

    Google Scholar 

  23. M.B. Petrovskaya and A. M. Leontovich. The central limit theorem for a sequence of random variables with a slowly growing number of dependences. Th. Prob. Appl., 27(4):815–825, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Penrose and JE Yukich. Normal approximation in geometric probability. Stein’s Method and Applications, Lecture Note Series, Institute for Mathematical Sciences, National University of Singapore, 5:37–58, 2005.

    Google Scholar 

  25. J. Spencer. Asymptotic lower bounds for Ramsey functions. Discrete Mathematics, 20:69–76, 1977.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Féray, V., Méliot, PL., Nikeghbali, A. (2016). Dependency graphs and mod-Gaussian convergence. In: Mod-ϕ Convergence. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-46822-8_9

Download citation

Publish with us

Policies and ethics