Skip to main content

Introduction

  • Chapter
  • First Online:
Mod-ϕ Convergence

Abstract

The notion of mod-φ convergence has been studied in the articles [JKN11, DKN15, KN10, KN12, BKN14], in connection with problems from number theory, random matrix theory and probability theory. The main idea was to look for a natural renormalisation of the characteristic functions of random variables which do not converge in law (instead of a renormalisation of the random variables themselves). After this renormalisation, the sequence of characteristic functions converges to some non-trivial limiting function. Here is the definition of mod-φ convergence that we will use throughout this chapter (see Section 1.5 for a discussion on the different parts of this definition).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. D. Barbour, E. Kowalski, and A. Nikeghbali. Mod-discrete expansions. Probab. Th. Rel. Fields, 158(3):859–893, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. R. Bahadur and R. R. Rao. On deviations of the sample mean. Ann. Math. Statis., 31:1015–1027, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Cramér. Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Sci. Indust., 736:5–23, 1938.

    MATH  Google Scholar 

  4. H. Döring and P. Eichelsbacher. Moderate Deviations via Cumulants. Journal of Theoretical Probability, 26(2): 360–385, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Delbaen, E. Kowalski, and A. Nikeghbali. Mod-φ convergence, 2015.

    MATH  Google Scholar 

  6. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, 2nd edition, 1998.

    Google Scholar 

  7. R. S. Ellis. Large deviations for a general class of random vectors. Ann. Probab., 12:1–12, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Féray, P.-L. Méliot, and A. Nikeghbali. Mod-φ convergence, III: Multi-dimensional mod-Gaussian convergence and related estimates of probabilities. In preparation, 2015.

    MATH  Google Scholar 

  9. V. Féray, P.-L. Méliot, and A. Nikeghbali. Mod-φ convergence, II: Estimates of the speed of convergence and local limit theorems. In preparation, 2016.

    MATH  Google Scholar 

  10. J. Gärtner. On large deviations from the invariant measure. Th. Probab. Appl., 22:24–39, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. H. Harper. Stirling behavior is asymptotically normal. Ann. Math. Statist., 38(2):410–414, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.P. Hughes, J.P. Keating, and N. O’Connell. On the characteristic polynomial of a random unitary matrix. Comm. Math. Phys., 220(2):429–451, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.-K. Hwang. Large deviations for combinatorial distributions. I. Central limit theorems. Ann. Appl. Probab., 6(1):297–319, 1996.

    Google Scholar 

  14. I. A. Ibragimov and Y. V. Linnik. Independent and stationary sequences of random variables. Wolters-Noordhoff, 1971.

    MATH  Google Scholar 

  15. J. Jacod, E. Kowalski, and A. Nikeghbali. Mod-Gaussian convergence: new limit theorems in probability and number theory. Forum Mathematicum, 23(4):835–873, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Kowalski and A. Nikeghbali. Mod-Poisson convergence in probability and number theory. Intern. Math. Res. Not., 18:3549–3587, 2010.

    MathSciNet  MATH  Google Scholar 

  17. E. Kowalski and A. Nikeghbali. Mod-Gaussian distribution and the value distribution of ζ(1∕2 + it) and related quantities. J. London Math. Soc., 86(2):291–319, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Kowalski, J. Najnudel, and A. Nikeghbali. A characterization of limiting functions arising in mod-* convergence. Electronic Communications in Probability, 20(79):1–11, 2015.

    MathSciNet  MATH  Google Scholar 

  19. J. P. Keating and N. C. Snaith. Random matrix theory and ζ(1∕2 + it). Comm. Math. Phys., 214(1):57–89, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Nikeghbali and D. Zeindler. The generalized weighted probability measure on the symmetric group and the asymptotic behavior of the cycles. Ann. Inst. Henri Poincaré Probab. Stat., 49(4):961–981, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Radziwill. On large deviations of additive functions. B.Sc thesis, arXiv:09095274v4 [math.NT], 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Féray, V., Méliot, PL., Nikeghbali, A. (2016). Introduction. In: Mod-ϕ Convergence. SpringerBriefs in Probability and Mathematical Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-46822-8_1

Download citation

Publish with us

Policies and ethics