Skip to main content

Abstract

We investigate trade-offs that are created in wireless powered communication networks. To this end, we take into account throughput maximization, energy efficiency, and fairness and we present and discuss the solution of several optimization problems, considering different scenarios for the network consistence, the adopted protocol, and the energy arrival knowledge. We show that all optimization problems can be solved using convex optimization, and, thus the provided solutions can be efficiently used in practical implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Imari, M., Xiao, P., Imran, M.A., Tafazolli, R.: Uplink non-orthogonal multiple access for 5G wireless networks. In: Proceedings 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 781–785 (2014). doi:10.1109/ISWCS.2014.6933459

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2009)

    Google Scholar 

  3. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient Methods. Lecture Notes of EE392o Stanford University Autumn (2003–2004)

    Google Scholar 

  4. Chen, H., Li, Y., Rebelatto, J.L., Ucha-Filho, B.F., Vucetic, B.: Harvest-Then-Cooperate: wireless-powered cooperative communications. IEEE Trans. Signal Process. 63(7), 1700–1711 (2015). doi:10.1109/TSP.2015.2396009

    Article  MathSciNet  Google Scholar 

  5. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the LambertW function. Adv. Comput. Math. 5(1), 329–359 (1996). doi:10.1007/BF02124750

    Article  MathSciNet  MATH  Google Scholar 

  6. Diamantoulakis, P.D., Ntouni, G.D., Pappi, K.N., Karagiannidis, G.K., Sharif, B.S.: Throughput maximization in multicarrier wireless powered relaying networks. IEEE Wireless Commun. Lett. 4(4), 385–388 (2015). doi:10.1109/LWC.2015.2424237

    Article  Google Scholar 

  7. Diamantoulakis, P.D., Pappi K.N., Ding, Z., Karagiannidis, G.K.: Wireless Powered Communications with Non-Orthogonal Multiple Access. IEEE Trans. on Wireless Commun. (2015). 99, pp. 1 doi:10.1109/TWC.2016.2614937

    Google Scholar 

  8. Diamantoulakis, P.D., Pappi K.N., Ding, Z., Karagiannidis, G.K.: Optimal Design of Non-Orthogonal Multiple Access with Wireless Power Transfer. In: Proceedings IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1–6 (2016). doi:10.1109/ICC.2016.7510866

  9. Diamantoulakis, P.D., Pappi, K.N., Karagiannidis, G.K., Poor, H.V.: Autonomous energy harvesting base stations with minimum storage requirements. IEEE Wireless Commun. Lett. 4(3), 265–268 (2015). doi:10.1109/LWC.2015.2406711

    Article  Google Scholar 

  10. Ding, Z., Perlaza, S.M., Esnaola, I., Poor, H.V.: Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wireless Commun. 13(2), 846–860 (2014). doi:10.1109/TWC.2013.010213.130484

    Article  Google Scholar 

  11. Ding, Z., Yang, Z., Fan, P., Poor, H.V.: On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014). doi:10.1109/LSP.2014.2343971

    Article  Google Scholar 

  12. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015). doi:10.1109/LCOMM.2015.2441064

    Article  Google Scholar 

  13. Grover, P., Sahai, A.: Shannon Meets Tesla: wireless information and power transfer. In: Proceedings IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2363–2367 (2010). doi:10.1109/ISIT.2010.5513714

  14. Hadzi-Velkov, Z., Nikoloska, I., Karagiannidis, G., Duong, T.: Wireless networks with energy harvesting and power transfer: joint power and time allocation. IEEE Signal Process. Lett. 23(1), 50–54 (2016). doi:10.1109/LSP.2015.2500340

    Article  Google Scholar 

  15. Ju, H., Zhang, R.: Throughput maximization in wireless powered communication networks. IEEE Trans. Wireless Commun. 13(1), 418–428 (2014). doi:10.1109/TWC.2013.112513.130760

    Article  MathSciNet  Google Scholar 

  16. Krikidis, I.: Simultaneous information and energy transfer in large-scale networks with/without relaying. IEEE Trans. Commun. 62(3), 900–912 (2014). doi:10.1109/TCOMM.2014.020914.130825

    Article  Google Scholar 

  17. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D.W.K., Schober, R.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014). doi:10.1109/MCOM.2014.6957150

    Article  Google Scholar 

  18. Lee, S., Zhang, R.: Cognitive wireless powered network: spectrum sharing models and throughput maximization. IEEE Trans. Cogn. Commun. Netw. PP(99), 1–1 (2015). doi:10.1109/TCCN.2015.2508028

    Google Scholar 

  19. Liu, L., Zhang, R., Chua, K.C.: Multi-antenna wireless powered communication with energy beamforming. IEEE Trans. Commun. 62(12), 4349–4361 (2014). doi:10.1109/TCOMM.2014.2370035

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Wang, L., Elkashlan, M., Duong, T., Nallanathan, A.: Two-way relaying networks with wireless power transfer: policies design and throughput analysis. In: Proceedings IEEE Global Communications Conference (GLOBECOM), pp. 4030–4035 (2014). doi:10.1109/GLOCOM.2014.7037438

  21. Luo, S., Zhang, R., Lim, T.J.: Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Trans. Wireless Commun. 12(3), 1196–1207 (2013). doi:10.1109/TWC.2013.012413.120488

    Article  Google Scholar 

  22. Marshoud, H., Kapinas, V.M., Karagiannidis, G.K., Muhaidat, S.: Non-orthogonal multiple access for visible light communications. IEEE Photon. Technol. Lett. 28(1), 51–54 (2016). doi:10.1109/LPT.2015.2479600

    Article  Google Scholar 

  23. Mohjazi, L., Dianati, M., Karagiannidis, G.K., Muhaidat, S., Al-Qutayri, M.: RF-powered cognitive radio networks: technical challenges and limitations. IEEE Commun. Mag. 53(4), 94–100 (2015). doi:10.1109/MCOM.2015.7081081

    Article  Google Scholar 

  24. Ng, D., Lo, E., Schober, R.: Energy-efficient power allocation in OFDM systems with wireless information and power transfer. In: Proceedings IEEE International Conference on Communications (ICC), pp. 4125–4130 (2013). doi:10.1109/ICC.2013.6655208

  25. Ng, D.W.K., Lo, E., Schober, R.: Energy-efficient Power allocation in OFDM systems with wireless information and power transfer. In: Proceedings IEEE International Conference on Communications (ICC), pp. 4125–4130 (2013). doi:10.1109/ICC.2013.6655208

  26. Ng, D.W.K., Lo, E.S., Schober, R.: Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Trans Wireless Commun. 12(12), 6352–6370 (2013). doi:10.1109/TWC.2013.103113.130470

    Article  Google Scholar 

  27. Nikoloska, I., Hadzi-Velkov, Z., Cingoska, H.: Future Access Enablers for Ubiquitous and Intelligent Infrastructures, chap. Resource Allocation in Energy Harvesting Communication Systems, pp. 292–298. Springer International Publishing (2015)

    Google Scholar 

  28. Saito, Y., Benjebbour, A., Kishiyama, Y., Nakamura, T.: System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In: Proceedings IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 611–615 (2013). doi:10.1109/PIMRC.2013.6666209

  29. Sudevalayam, S., Kulkarni, P.: Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surveys Tutorials 13(3), 443–461 (2011). doi:10.1109/SURV.2011.060710.00094

    Article  Google Scholar 

  30. Timotheou, S., Krikidis, I., Zheng, G., Ottersten, B.: Beamforming for MISO interference channels with QoS and RF energy transfer. IEEE Trans. Wireless Commun. 13(5), 2646–2658 (2014). doi:10.1109/TWC.2014.032514.131199

    Article  Google Scholar 

  31. Varshney, L.R.: Transporting Information and energy simultaneously. In: Proceedings IEEE International Symposium on Information Theory (ISIT), pp. 1612–1616 (2008). doi:10.1109/ISIT.2008.4595260

  32. Wu, Q., Tao, M., Ng, D., Chen, W., Schober, R.: Energy-efficient resource allocation for wireless powered communication networks. IEEE Trans. Wireless Commun. PP(99), 1–1 (2015). doi:10.1109/TWC.2015.2502590

    Google Scholar 

  33. Wu, X., Xu, W., Dong, X., Zhang, H., You, X.: Asymptotically optimal power allocation for massive MIMO wireless powered communications. IEEE Wireless Commun. Lett. 5(1), 100–103 (2016). doi:10.1109/LWC.2015.2502939

    Article  Google Scholar 

  34. Xiang, Z., Tao, M.: Robust beamforming for wireless information and power transmission. IEEE Wireless Commun. Lett. 1(4), 372–375 (2012). doi:10.1109/WCL.2012.053112.120212

    Article  Google Scholar 

  35. Yin, S., Zhang, E., Li, J., Yin, L., Li, S.: Throughput optimization for self-powered wireless communications with variable energy harvesting rate. In: Proceedings Wireless Communications and Networking Conference (WCNC), pp. 830–835 (2013). doi:10.1109/WCNC.2013.6554671

  36. Zhong, C., Suraweera, H., Zheng, G., Krikidis, I., Zhang, Z.: Wireless information and power transfer with full duplex relaying. IEEE Trans. Commun. 62(10), 3447–3461 (2014). doi:10.1109/TCOMM.2014.2357423

    Article  Google Scholar 

  37. Zhong, C., Chen, X., Zhang, Z., Karagiannidis, G.K.: Wireless-powered communications: performance analysis and optimization. IEEE Trans. Commun. 63(12), 5178–5190 (2015). doi:10.1109/TCOMM.2015.2488640

    Article  Google Scholar 

  38. Zhong, C., Zheng, G., Zhang, Z., Karagiannidis, G.K.: Optimum wirelessly powered relaying. IEEE Signal Process. Lett. 22(10), 1728–1732 (2015). doi:10.1109/LSP.2015.2428812

    Google Scholar 

  39. Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun. 61(11), 4754–4767 (2013). doi:10.1109/TCOMM.2013.13.120855

    Article  Google Scholar 

  40. Zhu, G., Zhong, C., Suraweera, H.A., Karagiannidis, G.K., Zhang, Z., Tsiftsis, T.A.: Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Trans. Commun. 63(4), 1400–1418 (2015). doi:10.1109/TCOMM.2015.2398862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis D. Diamantoulakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Diamantoulakis, P.D., Karagiannidis, G.K. (2016). Trade-Offs in Wireless Powered Communications. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics