Skip to main content

Wireless Power Transfer: Discrete Rectifier Modeling and Analysis

  • Chapter
  • First Online:

Abstract

An accurate equivalent circuit model to predict the Power Conversion Efficiency (PCE) of a Schottky Barrier Diode (SBD) is presented in this chapter. By making use of good insight into the used SBD models and careful analysis of circuit behavior, more efficient rectifier circuits have been identified. An increase in circuit efficiency of 18–25 % is shown compared to state of the art, resulting in 20–180 % more available energy from the rectifying circuit. Also the accuracy of simulation results has increased significantly due to the proposed model usage and analysis technique. All the simulations in this chapter are performed in a conjugately matched environment, which allows for an objective comparison of different Schottky diodes and rectifier topologies. The simulation results show a near-perfect match with measured data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In [19, 28], rms values are used for voltages and currents. In this work, peak values are used.

References

  1. Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., Sachs, J., Dohler, M., Koucheryavy, Y.: Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap. IEEE Commun. Mag. 53(9), 32–40 (2015). doi:10.1109/MCOM.2015.7263370

    Article  Google Scholar 

  2. Avago Technologies: Linear Model for Diode Surface Mount Packages. In: Application Note 1124 (2010)

    Google Scholar 

  3. Avago Technologies: Low Cost Surface Mount Power Limiters. In: Application Note 1050 (2010)

    Google Scholar 

  4. Bardeen, J.: On the theory of the A-C. Impedance of a contact rectifier. Bell Syst. Tech. J. 28, 428–434 (1949)

    Article  Google Scholar 

  5. Cowley, A., Sorensen, H.: Quantitative comparison of solid-state microwave detectors. IEEE Trans. Microw. Theory Tech. 14(12), 588–602 (1966). doi:10.1109/TMTT.1966.1126337

    Article  Google Scholar 

  6. Deveney, M.: A temperature dependent SPICE macro-model for Zener and avalanche diodes. In: Proceedings of the 34th Midwest Symposium on Circuits and Systems, 1991, vol. 2, pp. 592–596 (1991). doi:10.1109/MWSCAS.1991.252092

  7. Greinacher, H.: Das Ionometer und seine Verwendung zur Messung von Radium- und Rontgenstrahlen. Physikalische Zeitschrift 15, 410–415 (1914)

    Google Scholar 

  8. Hemour, S., Wu, K.: Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102(11), 1667–1691 (2014). doi:10.1109/JPROC.2014.2358691

    Article  Google Scholar 

  9. Hemour, S., Zhao, Y., Lorenz, C., Houssameddine, D., Gui, Y., Hu, C.M., Wu, K.: Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Tech. 62(4), 965–976 (2014). doi:10.1109/TMTT.2014.2305134

    Article  Google Scholar 

  10. Hewlett Packard: Hermetic PIN Diodes for Stripline / Microstrip Switches / Attenuators. In: Technical Data 5965-8882E

    Google Scholar 

  11. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V., Guan, Y.L.: Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015). doi:10.1109/MCOM.2015.7120024

    Article  Google Scholar 

  12. Kanaya, H., Tsukamaoto, S., Hirabaru, T., Kanemoto, D., Pokharel, R., Yoshida, K.: Energy harvesting circuit on a one-sided directional flexible antenna. IEEE Microw. Wirel. Compon. Lett. 23(3), 164–166 (2013). doi:10.1109/LMWC.2013.2246779

    Article  Google Scholar 

  13. Kuhn, V., Lahuec, C., Seguin, F., Person, C.: A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Trans. Microw. Theory Tech. 63(5), 1768–1778 (2015). doi:10.1109/TMTT.2015.2416233

    Article  Google Scholar 

  14. Massobrio, G., Antognetti, P.: Semiconductor Device Modeling with SPICE. McGraw-Hill (1988)

    Google Scholar 

  15. Nagel, L.W., Pederson, D.: Spice (simulation program with integrated circuit emphasis). Tech. Rep. UCB/ERL M382, EECS Department, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html (1973)

  16. Nintanavongsa, P., Muncuk, U., Lewis, D., Chowdhury, K.: Design optimization and implementation for RF energy harvesting circuits. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(1), 24–33 (2012). doi:10.1109/JETCAS.2012.2187106

    Article  Google Scholar 

  17. Pflug, H.W., Visser, H.J., Keyrouz, S.: Practical applications of radiative wireless power transfer. In: Wireless Power Transfer Conference (WPTC), 2015 IEEE, pp. 1–4. doi:10.1109/WPT.2015.7140131 (2015)

  18. Qucs homepage: http://qucs.sourceforge.net/. [Online] http://qucs.sourceforge.net/ (2015)

  19. Rahola, J.: Power waves and conjugate matching. IEEE Trans. Circuits Syst. II: Express Briefs 55(1), 92–96 (2008). doi:10.1109/TCSII.2007.905420

    Article  Google Scholar 

  20. Roberg, M., Reveyrand, T., Ramos, I., Falkenstein, E., Popovic, Z.: High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans. Microw. Theory Tech. 60(12), 4043–4052 (2012). doi:10.1109/TMTT.2012.2222919

    Article  Google Scholar 

  21. Russell, H.T.: The SPICE Diode Model (1991). Chapter 3 from Rectifier Applications Handbook, Motorola

    Google Scholar 

  22. Schottky, W.: Vereinfachte und erweiterte Theorie der Randschichtgleichrichter. Zeitschrift für Physik 118(9–10), 539–592 (1942)

    Article  MATH  Google Scholar 

  23. Shockley, W.: The theory of p-n junctions in semiconductor and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949)

    Article  Google Scholar 

  24. Sze, S.M.: Physics of Semiconductor Devices. Wiley (1969)

    Google Scholar 

  25. Torrey, H., Whitmer, C.: Crystal Rectifiers. McGraw-Hill (1948)

    Google Scholar 

  26. van Rossum, G.: Python website. https://www.python.org/. [Online] https://www.python.org/

  27. Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014). doi:10.1109/MMM.2014.2309499

    Article  Google Scholar 

  28. Vendelin, G.D., Pavio, A.M., Rohde, U.L.: Microwave Circuit Design Using Linear and Nonlinear Techniques, 1st edn. Wiley-Interscience (1992)

    Google Scholar 

  29. Visser, H.J., Keyrouz, S., Smolders, A.B.: Optimized rectenna design. Wirel. Power Transf. 2, 44–50 (2015). doi:10.1017/wpt.2014.14

    Article  Google Scholar 

  30. Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101(6), 1410–1423 (2013). doi:10.1109/JPROC.2013.2250891

    Article  Google Scholar 

  31. Vladimirescu, A.: The SPICE Book. Wiley (1994)

    Google Scholar 

  32. Wong, S., Hu, C.M.: SPICE macro model for the simulation of zener diode I-V characteristics. IEEE Circuits Devices Mag. 7(4), 9–12 (1991). doi:10.1109/101.134564

    Article  Google Scholar 

  33. Yi, J., Ki, W.H., Tsui, C.Y.: Analysis and design strategy of UHF micro-power cmos rectifiers for micro-sensor and RFID applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(1), 153–166 (2007). doi:10.1109/TCSI.2006.887974

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shady Keyrouz of the Eindhoven University of Technology for his contribution in the validation of the time trajectory technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans W. Pflug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Pflug, H.W., Visser, H.J. (2016). Wireless Power Transfer: Discrete Rectifier Modeling and Analysis. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics