Skip to main content

Abstract

For employing large IoT wireless sensor networks, powering the sensors by cabling or primary batteries is not feasible. Using radiated fields seems to be a possible alternative. However, the expected power densities from ambient radio frequency (RF) sources (Global System for Mobile communication (GSM), digital television (DTV), WiFi) are too small for a practical use. Using dedicated transmitters in a wireless power transfer setup, using the (power-restricted) license-free ISM frequency bands will increase the levels by an order of magnitude. Then through a careful co-design of the rectifier, receive antenna and the power management, the powering of low-power, duty-cycled wireless IoT sensors becomes feasible. The models employed for the rectifier are outlined. Then working from the core (the rectifier) toward both extremeties (the antenna and the power management circuit), the design procedure for a rectifying antenna or rectena is outlined. Future perspectives for increasing the rectenna’s efficiency and the amount of power being received are outlined, using transient arrays and multisine signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the correct term should be Wireless Energy Transfer. However, since WPT is by now a generally accepted term, we will stick to the use of WPT.

  2. 2.

    That means that using a highly directive transmit antenna (large \(G_{T}\)) needs to be compensated by lowering the power injected into the antenna (decreasing \(P_{T}\)).

  3. 3.

    COST = Cooperation in Science and Technology.

  4. 4.

    The reason that we choose for a 10 k\(\Omega \) load is that later we will connect the rectifier to a power management IC with voltage boost functionality. The input impedance of this IC is close to 10 k\(\Omega \).

  5. 5.

    Power management circuits therefore need an input voltage regulation to prevent collapsing.

  6. 6.

    \(R_{0}\) = 750 \(\Omega \), \(R_{1}\) = 360 \(\Omega \), \(R_{2}\) = 180 \(\Omega \), \(R_{3}\) = 91 \(\Omega \), \(R_{4}\) = 47 \(\Omega \), \(R_{5}\) = 22 \(\Omega \), \(R_{6}\) = 11 \(\Omega \).

References

  1. Internet of Things Global Standards Initiative. International Telecommunication Union. http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx. Accessed 04 Mar 2016

  2. Intelligent buildings—a holistic perspective on energy management. Electrical Rev. http://www.electricalreview.co.uk/features/6495-118645. Accessed 04 Mar 2016

  3. Wiring a Building. http://www.macktez.com/2004/wiring-a-building/. Accessed 04 Mar 2016

  4. Waffenschmidt, E., Staring, T.: Limitation of inductive power transfer for consumer applications. In: European Conference on Power Electronics, p. 10 (2009)

    Google Scholar 

  5. Sample, A.P., Yeager, D.J., Powledge, P.S., Mamishev, A.V., Smith, J.R.: Design of an RFID-based battery-free programmable sensing platform. IEEE Trans. Instrum. Measur. 57(11), 2608–2615 (2008)

    Article  Google Scholar 

  6. Hemour, S., Wu, K.: Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102(11), 1667–1691 (2014)

    Article  Google Scholar 

  7. Karalis, A., Joannopoulos, J.D., Soljacis, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1), 34–48 (2008)

    Article  Google Scholar 

  8. International Telecommunication Union. Radio Regulations (2012). http://www.itu.int/dms-pub/itu-s/oth/02/02/S02020000244501PDFE.PDF. Accessed 04 Mar 2016

  9. IEEE. IEEE Standard Letter Designators for Radar-Frequency Bands. IEEE Std 521-2002 (2002)

    Google Scholar 

  10. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2012)

    Google Scholar 

  11. Pinuela, M., Mitcheson, P.D., Lucyszyn, S.: Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans. Microw. Theor. Tech. 61(7), 2715–2726 (2013)

    Article  Google Scholar 

  12. Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101(6), 1410–1423 (2013)

    Google Scholar 

  13. Bergqvist, U., Friedrich, G., Hamerius, Y., Martens, L., Neubauer, G., Thuroczy, G., Vogel, E., Wiart, J.: Mobile Telecommunication Base Stations—Exposure to electromagnetic Fields, COST-244bis Short term Mission on Base Station Exposure (2000)

    Google Scholar 

  14. Shockley, W.: The theory of \(p-n\) junctions in semiconductor and \(p-n\) junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949)

    Article  Google Scholar 

  15. Fleri, D.A., Cohen, L.D.: Nonlinear analysis of the Schottky-barrier mixer diode. IEEE Trans. Microw. Theor. Tech. 21(1), 39–43 (1973)

    Article  Google Scholar 

  16. Hubregt, J.: Visser Approximate Antenna Analysis for CAD. Wiley, Chichester, UK (2009)

    Google Scholar 

  17. Shampine, L., Gear, C.: A user’s view of solving stiff ordinary differential equations. SIAM Rev. 21(1), 1–17 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shampine, L., Reichelt, M.: The matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Avago Technologies. HSMS-285x Series: Surface Mount Zero Bias Schottky Detector Diodes, 29 May 2009

    Google Scholar 

  20. Shepherd, W., Zand, P.: Energy Flow and Power Factor in Nonsinusoidal Circuits, Cambridge University Press (1979)

    Google Scholar 

  21. Barnett, R., Liu, J., lazar, S.: A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders. IEEE J. Solid-State Circ. 44(2), 354–370 (2009)

    Google Scholar 

  22. Barnett, R., Lazar, S., Liu, J.: Design of multistage rectifierswith low-cost impedance matching for passive RFID tags. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2006)

    Google Scholar 

  23. Dickson, J.: On-chip high voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circ. 11(3), 374–378 (1976)

    Article  Google Scholar 

  24. de Carli, L., Juppa, Y., Cardoso, A., Galup-Montoro, C., Schneider, M.: Maximizing the power conversion efficiency of ultra-low voltage CMOS multi-stage rectifiers. IEEE Trans. Circ. Syst.I Regul. Pap. 62(4), 967–975 (2015)

    Article  MathSciNet  Google Scholar 

  25. Freescale Semiconductor Inc.: Comapct integrated antennas, designs and applications for the MC1321X, MC1322X, MC1323X and MKW40/30/20. Application Note, Document Nr. AN2731, September 2015

    Google Scholar 

  26. Visser, H.J., Keyrouz, S., Smolders, B.: Optimized rectenna design. Wirel. Power Transf. 2(1), 44–50 (2015)

    Article  Google Scholar 

  27. Hubregt, J.: Visser Antenna Theory and Applications. Wiley, Chichester, UK (2012)

    MATH  Google Scholar 

  28. https://www.cst.com/Products/CSTMWS. Accessed 04 Mar 2016

  29. Cabedo-Fabres, M. Antonino-Daviu, E., Valero-Nogueira, A., Bataller, M.F.: The theory of characteristic modes revisited: a contribution to the design of antennas for modern applications. IEEE Antennas Propag. Mag. 49(5), 52–68 (2007)

    Google Scholar 

  30. Miers, Z, Li, H., Lau, B.K.: Design of bezel antennas for multiband MIMO terminals using charactersitic modes. In: European Conference on Antennas and Propagation, pp. 2556–2560 (2014)

    Google Scholar 

  31. Visser, H.J., Pop, V., Op het Veld, B., Vullers, R.J.M.: Remote RF battery charging. In: PowerMEMS Conference, 4pp. (2010)

    Google Scholar 

  32. http://www.ti.com/product/BQ25570. Accessed 05 Mar 2016

  33. Pflug, H.W., Visser, H.J., Keyrouz, S.: Practical applications of radiative wireless power transfer. In: Wireless Power Transfer Conference, 4pp. (2015)

    Google Scholar 

  34. Boaventura, A.S., Carvalho, N.B.: Maximizing DC power in energy harvesting circuits using multisine excitation. In: International Microwave Symposium, 4pp. (2011)

    Google Scholar 

  35. Boaventura, A., Carvalho, N.B., Georgiadis, A.: The impact of multi-sine tone separation on RF-DC efficiency. In: Asia-Pacific Microwave Conference, pp. 606–609 (2014)

    Google Scholar 

  36. Boaventura, A., Belo, D., Fernandes, R., Collado, A., Georgiadis, A., Carvalho, N.B.: Boosting the efficiency. IEEE Microw. Mag. 87–96, Apr 2015

    Google Scholar 

  37. Smith, G.S., Hertel, T.W.: On the transient radiation of energy from simple current distributions and linear antennas. IEEE Antennas Propag. Mag. 43(3), 49–63 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubregt J. Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Visser, H.J., Pflug, H.W., Keyrouz, S. (2016). Far-Field Wireless Power Transfer for IoT Sensors. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics