Skip to main content

Abstract

Non-radiative Wireless power transfer (NR-WPT) is currently receiving considerable attention in very different application scenarios. To design optimum solutions, a systematic approach based on circuit theory is needed and not yet available in the literature. In this chapter, by using a network formalism, the WPT link is modeled as a two-port network and a methodology to derive an equivalent circuit is proposed. This allows to compute in a rigorous and general way the maximum achievable performance for any given WPT link. The latter can be expressed in terms of either maximum power transfer efficiency (MPTE), or maximum power delivered to the load (MPDL), or by any suitable combination of the two. This chapter provides a comprehensive theoretical and general framework to predict such performance for both inductive and capacitive coupled links. In order to facilitate a practical implementation, both impedance and admittance matrix representations are discussed and computational examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bird, T.S., Rypkema, N., Smart, K.W.: Antenna impedance matching for maximum power transfer in wireless sensor networks. IEEE Sensors 916–919 (2009)

    Google Scholar 

  2. Cannon, B.L., Hoburg, J.F., Stancil, D.D., Goldstein, S.C.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24(7), 1819–1825 (2009). doi:10.1109/TPEL.2009.2017195

    Article  Google Scholar 

  3. Chang, Y.C., Yang, C.Y., Li, C.H., Cheng, S.J., Chiu, H.J., Lo, Y.K.: Design and implementation of a contact-less power charger for robot applications. In: 2012 10th IEEE International Conference on Industrial Informatics (INDIN), pp. 827 –832 (2012). doi:10.1109/INDIN.2012.6300832

  4. Costanzo, A., Dionigi, M., Masotti, M., Mongiardo, M., Monti, G., Tarricone, L., Sorrentino, R.: Electromagnetic energy harvesting and wireless power transmission: a unified approach. Proc. IEEE 102(11), 1692–1711 (2014). doi:10.1109/JPROC.2014.2355261

    Article  Google Scholar 

  5. Costanzo, A., Dionigi, M., Mastri, F., Mongiardo, M., Russer, J.A., Russer, P.: Rigorous design of magnetic-resonant wireless power transfer links realized with two coils. In: Proceedings of the European Microwave Conference (EuMC), pp. 414–417 (2014)

    Google Scholar 

  6. Costanzo, A., Dionigi, M., Mastri, F., Mongiardo, M., Russer, J.A., Russer, P.: Design of magnetic-resonant wireless power transfer links realized with two coils: comparison of solutions. Int. J. Microwave Wirel. Technol. 7, 349–359 (2015)

    Article  Google Scholar 

  7. Dai, J., Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015)

    Article  Google Scholar 

  8. Dionigi, M., Mongiardo, M.: Cad of wireless resonant energy links (wrel) realized by coils. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1760–1763 (2010). doi:10.1109/MWSYM.2010.5516711

  9. Dionigi, M., Mongiardo, M.: Cad of efficient wireless power transmission systems. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1–4 (2011). doi:10.1109/MWSYM.2011.5972606

  10. Dionigi, M., Mongiardo, M., Perfetti, R.: Rigorous network and full-wave electromagnetic modeling of wireless power transfer links. IEEE Trans. Microwave Theory Tech. 63(1), 65–75 (2015). doi:10.1109/TMTT.2014.2376555

    Article  Google Scholar 

  11. Ghotbi, I., Najjarzadegan, M., Ashtiani, S., Shoaei, O., Shahabadi, M.: 3-coil orientation insensitive wireless power transfer for capsule endoscope. In: 2015 23rd Iranian Conference on Electrical Engineering (ICEE), pp. 1249–1254. IEEE (2015)

    Google Scholar 

  12. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007). doi:10.1126/science.1143254

    Article  MathSciNet  Google Scholar 

  13. Li, J.L.W.: Wireless power transmission: State-of-the-arts in technologies and potential applications. In: Microwave Conference Proceedings (APMC), 2011, pp. 86–89 (2011)

    Google Scholar 

  14. Low, Z.N., Chinga, R.A., Tseng, R., Lin, J.: Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron. 56(5), 1801–1812 (2009). doi:10.1109/TIE.2008.2010110

    Article  Google Scholar 

  15. Monti, G., Arcuti, P., Tarricone, L.: Resonant inductive link for remote powering of pacemakers. IEEE Trans. Microwave Theory Tech. 63(11), 3814–3822 (2015). doi:10.1109/TMTT.2015.2481387

    Article  Google Scholar 

  16. Monti, G., Tarricone, L., Dionigi, M., Mongiardo, M.: Magnetically coupled resonant wireless power transmission: An artificial transmission line approach. In: Proceedings of the Microwave Conference (EuMC), pp. 233–236 (2012)

    Google Scholar 

  17. Russer, J.A., Russer, P.: Design considerations for a moving field inductive power transfer system. In: IEEE International Wireless Power Transfer Conference Perugia WPTC, pp. 1–4 (2013)

    Google Scholar 

  18. Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2) (2011). doi:10.1109/TIE.2010.2046002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Monti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Monti, G., Mongiardo, M., Mastri, F., Costanzo, A., Corchia, L., Tarricone, L. (2016). Non-radiative Wireless Power Transmission: Theory and Applications. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics