Skip to main content

Phenotypic Variation in Natural Populations

  • Chapter
  • First Online:
The Conifers: Genomes, Variation and Evolution

Abstract

The recognition and subsequent study of genetic variation in conifers began with the observation that trees varied in observable or measurable (phenotypic) traits and that variation was often distributed geographically. Virtually everything we learned about genetic variation (genotypic) in forest trees before the development of allozymes, genetic markers, and genome sequences derived from the study of phenotypic variation among and within natural and domesticated populations of trees. The predominant research approach for such studies has been the common garden trial, which provides an objective means for dissecting observable phenotypic variation into its component effects, genotypic and environmental, as described by the simple equation P = G + E (phenotype = genotype + environment; Fig. 8.1). In forestry, common garden studies in which accessions from multiple natural populations of a single species are evaluated within the same test site are known as provenance trials. Common garden studies that evaluate pedigreed accessions from domesticated populations, usually across a narrower geographic area, are referred to as genetic tests or progeny tests. Here we are concerned only with the study of genetic variation in natural populations, though genetic testing has revealed a great deal about variation in phenotypic traits and the genetic basis of that variation. Historically treatments of this topic have frequently used the misleading term “geographic variation” to describe patterns of phenotypic variation across the landscape. Since we are not interested in variation in geography, but in biological variation shaped by natural selection driven by climatic factors associated with geography, the choice of “phenotypic variation” in the chapter title more accurately reflects the contents discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto, F. J., Aitken, S. N., Alia, R., Gonzalez-Martinez, S. C., Hanninen, H., Kremer, A., Lefevre, F., Lenormand, T., Yeaman, S., Whetten, R., & Savolainen, O. (2013). Potential for evolutionary responses to climate change - evidence from tree populations. Global Change Biology, 19, 1645–1661. https://doi.org/10.1111/gcb.12181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal, S., Harrington, C. A., Gould, P. J., & St Clair, J. B. (2015a). Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Global Change Biology, 21, 947–958.

    Article  PubMed  Google Scholar 

  • Bansal, S., St Clair, J. B., Harrington, C. A., & Gould, P. J. (2015b). Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations. Global Change Biology, 21, 3814–3826.

    Article  PubMed  Google Scholar 

  • Bansal, S., Harrington, C. A., & St Clair, J. B. (2016). Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness. Ecology and Evolution, 6, 2074. https://doi.org/10.1002/ece3.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, C. G. (1930). The frost hardiness of geographic strains of Norway pine. Journal of Forestry, 28, 327–333.

    Google Scholar 

  • Beaulieu, J., & Rainville, A. (2005). Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81(5), 704–709.

    Article  Google Scholar 

  • Bergin, D. O., & Kimberley, M. O. (1992). Provenance variation in Podocarpus totara. New Zealand Journal of Ecology, 16(1), 5–13.

    Google Scholar 

  • Bergin, D. O., Kimberley, M. O., & Low, C. B. (2008). Provenance variation in Podocarpus totara (D. Don): Growth, tree form and wood density on a coastal site in the north of natural range, New Zealand. Forest Ecology and Management, 255, 1367–1378.

    Article  Google Scholar 

  • Bi, H., Li, R., Wu, Z., Huang, Q., Liu, Q., Zhou, Y., & Li, Y. (2013). Early performance of Pinus radiata provenances in the earthquake-ravaged dry river valley area of Sichuan, southwest China. Journal of Forestry Research, 24(4), 619–632.

    Article  CAS  Google Scholar 

  • Blada, I., & Popescu, F. (2007). Swiss stone pine provenance experiment in Romania: II Variation in growth and branching traits to age 14. Silvae Genetica, 56(3–4), 148–158.

    Article  Google Scholar 

  • Blouin, D., Beaulieu, J., Daoust, G., & Poliquin, J. (1994). Wood quality of Norway spruce grown in plantations in Quebec. Wood and Fiber Science, 26(3), 342–353.

    Google Scholar 

  • Bowen, M. R., & Whitmore, T. C. (1980). Agathis - a genus of fast growing rain forest conifers. The Commonwealth Forestry Review, 59(3), 307–310.

    Google Scholar 

  • Breidenstein, J., Bastien, J.-C., & Roman-Amat, B. (1990, August 20–24). Douglas-fir range-wide variation results from the IUFRO data base. P. 2.13-1.26. In Proceedings of joint meeting Western Forest Genetics Association and IUFRO Working Parties S2.02-05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Weyerhaeuser Co., Federal Way, WA.

    Google Scholar 

  • Burley, J., & Nikles, D. G. (1973). Tropical provenance and progeny research and international cooperation. In Proceedings of joint workshop IUFRO in Nairobi, Kenya. Oxford, UK: Commonwealth Forestry Institute.

    Google Scholar 

  • CAMCORE Cooperative. (2000). Conservation and testing of tropical and subtropical forest tree species by the CAMCORE Cooperative. Raleigh: College of Natural Resources, NCSU. http://www.camcore.org/index.php.

    Google Scholar 

  • Campbell, R. K. (1979). Genecology of Douglas-fir in a watershed in the Oregon Cascades. Ecology, 60(5), 1036–1050.

    Article  Google Scholar 

  • Campbell, R. K. (1986). Mapped genetic variation of Douglas-fir to guide seed transfer in southwest Oregon. Silvae Genetica, 35(2–3), 85–96.

    Google Scholar 

  • Campbell, R. K. (1991). Soils, seed-zone maps, and physiography: Guidelines for seed transfer of Douglas-fir in Southwestern Oregon. Forest Science, 37(4), 973–986.

    Google Scholar 

  • Campbell, R. K., & Sorensen, F. C. (1978). Effect of test environment on expression of clines and on delineation of seed zones in Douglas-fir. Theoretical and Applied Genetics, 51, 223–246.

    Article  Google Scholar 

  • Campbell, R. K., & Sugano, A. I. (1979). Genecology of bud-burst phenology in Douglas-fir: Response to flushing temperature and chilling. Botanical Gazette, 140, 223–231.

    Article  Google Scholar 

  • Campbell, R. K., & Sugano, A. I. (1993). Genetic variation and seed zones of Douglas-fir in the Siskiyou National Forest. USDA Forest Service research paper PNW-RP-461.

    Google Scholar 

  • Castellanos-Acuna, D., Saenz-Romero, C., Lindig-Cisneros, R. A., Sanchez-Vargas, N. M., Lobbit, P., & Montero-Castro, J. C. (2013). Revista Chapingo Serie Ciencias Forestales y del Ambiente. doi: https://doi.org/10.5154/r.rchscfa.2013.01.002. http://www.chapingo.mx/revistas

  • Chalupka, W., Mejnartowicz, L., & Lewandoswski, A. (2008). Reconstitution of a lost forest tree population: A case study of Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 255, 2103–2108.

    Article  Google Scholar 

  • Ching, K. K. (1965). Early growth of Douglas-fir in a reciprocal planting (Forest Research Laboratory research paper 3). Corvallis: Oregon State University.

    Google Scholar 

  • Clausen, J., Keck, D. D., & Hiesey, W. M. (1940). Experimental studies on the nature of species. 1. The effect of varied environments on western North American Plants (Carnegie Institution of Washington publication no. 520). Washington, D.C.: Carnegie Institution of Washington.

    Google Scholar 

  • Conkle, M. T., & Critchfield, W. B. (1988). Genetic variation and hybridization of ponderosa pine. In D. M. Baumgarner & J. E. Lotan (Eds.), Proceedings of ponderosa pine – The Species and its management symposium (pp. 27–43). Pullman, WA: Washington State University.

    Google Scholar 

  • Cordoba-Rodriguez, D., Vargas-Hernandez, J. J., Lopez-Upton, J., & Munoz-Orozco, A. (2011). Root growth in young plants of Pinus pinceana Gordon in response to soil moisture. Agrociencia, 45, 493–506.

    Google Scholar 

  • Correla, I., Alia, R., Yan, W., David, T., Aguiar, A., & Almeida, M. H. (2010). Genotype environment interactions in Pinus pinaster at age 10 in a multi-environment trial in Portugal: A maximum likelihood approach. Annals of Forest Science, 67(6), 612. https://doi.org/10.1051/forest/2010025. https://hal.archives-ouvertes.fr/hal-00883587.

    Article  Google Scholar 

  • Costa e Silva, J., & Graudal, L. (2008). Evaluation of an international series of Pinus kesiya provenance trials for growth and wood quality traits. Forest Ecology and Management, 255, 3477–3488.

    Article  Google Scholar 

  • Court-Picon, M., Gadbin-Henry, C., Guibal, F., & Roux, M. (2004). Dendrometry and morphometry of Pinus pinea L. in lower Provence (France): Adaptability and variability of provenances. Forest Ecology and Management, 194, 319–333.

    Article  Google Scholar 

  • Cregg, B. M., Olivas-Garcia, J. M., & Hennessey, T. C. (2000). Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Canadian Journal of Forest Research, 30, 428–439.

    Article  Google Scholar 

  • Critchfield, W. B. (1957). Geographic variation in Pinus contorta (Maria Moors Cabot Foundation, Publication Number 3). Cambridge, MA: Harvard University. 118 p.

    Google Scholar 

  • De La Mata, R., & Zas, R. (2010). Performance of maritime pine Spanish Mediterranean provenances at young ages in transitional region between Atlantic and Mediterranean climates in NW Spain. Silvae Genetica, 59(1), 8–17.

    Article  Google Scholar 

  • Dorman, K. W. (1975). The genetics and breeding of Southern pines (USDA Forest Service Agriculture Handbook No. 471). Washington, D.C.: U.S. Department of Agriculture, Forest Service.

    Google Scholar 

  • Dvorak, W. S., Hodge, G. R., & Kietzka, J. E. (2007). Genetic variation in survival, growth, and stem form of Pinus leiophylla in Brazil and South Africa and provenance resistance to pitch canker. Southern Hemisphere Forestry Journal, 69(3), 125–135.

    Article  Google Scholar 

  • Gallis, A. T., Doulis, A. G., & Papageorgiou, A. C. (2007). Variability of cortex terpene composition in Cupressus sempervirens L. provenances grown in Crete, Greece. Silvae Genetica, 56(6), 294–299.

    Article  Google Scholar 

  • Gapare, W. J., Ivkovic, M., Dutkowski, G. W., Spencer, D. J., Buxton, P., & Wu, H. X. (2012). Genetic parameters and provenance variation of Pinus radiata D. Don. ‘Eldridge collection’ in Australia 1: Growth and form traits. Tree Genetics and Genomes, 8, 391–407.

    Article  Google Scholar 

  • Giertych, M. (1979). Summary of results on Scots pine (Pinus sylvestris L.) height growth in IUFRO provenance experiments. Silvae Genetica, 28, 136–152.

    Google Scholar 

  • Gömöry, D., Foffová, E., Kmeť, J., Longauer, R., & Romšáková, I. (2010). Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation. Acta Biologica Cracoviensia Series Botanica, 52(2), 42–49.

    Google Scholar 

  • Gould, P. J., Harrington, C. A., & Clair, J. B. S. (2011). Incorporating genetic variation into a model of budburst phenology of coast Douglas-fir (Pseudotsuga menziesii var. menziesii). Canadian Journal of Forest Research, 41, 139–150.

    Article  Google Scholar 

  • Gould, P. J., Harrington, C. A., & Clair, J. B. S. (2012). Growth phenology of coast Douglas-fir seed sources planted in diverse environments. Tree Physiology, 32, 1482–1496.

    Article  PubMed  Google Scholar 

  • Hansen, O. K., Nielsen, U. B., Edvardsen, O. M., Skulason, B., & Skage, J.-O. (2004). Nordic provenance trials with Abies lasiocarpa and Abies lasiocarpa var. arizonica: Three-year results. Scandinavian Journal of Forest Research, 19, 112–126.

    Article  Google Scholar 

  • Harfouche, A., Bahrman, N., Baradat, P., Guyon, J. P., Petit, R. J., & Kremer, A. (1999). Provenance hybridization in a diallel mating scheme of maritime pine (Pinus pinaster). II. Heterosis. Canadian Journal of Forest Research, 30, 10–16.

    Article  Google Scholar 

  • Hermann, R. K., & Lavender, D. P. (1968). Early growth of Douglas-fir from various altitudes and aspects in southern Oregon. Silvae Genetica, 17(4), 143–151.

    Google Scholar 

  • Hernandez-Serrano, A., Verdu, M., Santos-del-Blanco, L., Climent, J., Gonzalez-Martinez, S. C., & Pausas, J. G. (2014). Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Annals of Botany, 114, 571–577.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison, J. (1964). Forty years of genecology. Advances in Ecological Research, 2, 159–247.

    Article  Google Scholar 

  • Howe, G. T., Jayawickrama, K., Cherry, M., Johnson, G. R., & Wheeler, N. C. (2006). Breeding Douglas-fir. Plant Breeding Reviews, 27, 245.

    CAS  Google Scholar 

  • Huxley, J. (1938). Clines: An auxiliary taxonomic principle. Nature, London, 142, 219–220.

    Article  Google Scholar 

  • Illingworth, K. (1978). Study of lodgepole pine genotype-environment interaction. In Proceedings of IUFRO joint meeting of working parties: Douglas-fir provenances, lodgepole pine provenances, Sitka spruce provenances, and Abies provenances (pp. 151–158). Vancouver.

    Google Scholar 

  • Ilstedt, B., & Eriksson, G. (1986). Quality of intra- and inter-provenance families of Picea abies (L.) Karst. Scandinavian Journal of Forest Research, 1, 153–166.

    Article  Google Scholar 

  • Isaac-Renton, M. G., Roberts, D. R., Hamann, A., & Spiecker, H. (2014). Douglas-fir plantations in Europe: A retrospective test of assisted migration to address climate change. Global Change Biology, 20, 2607–2617. doi: 10:1111/gcb.12604.

    Article  PubMed  Google Scholar 

  • Isik, F., Isik, K., & Lee, S. J. (1999). Genetic variation in Pinus brutia Ten. in Turkey: I. Growth, biomass and stem quality traits. Forest Genetics, 6(2), 89–99.

    Google Scholar 

  • Isik, F., Keskin, S., & McKeand, S. E. (2000). Provenance variation and provenance-site interaction in Pinus brutia Ten.: Consequences of defining breeding zones. Silvae Genetica, 49(4–5), 213–223.

    Google Scholar 

  • Jaquish, B.C. (1990, August 20–24). Geographic variation in ten-year height growth of interior Douglas-fir in British Columbia. P. 2.144–2.155. In: Proc. Joint meeting Western Forest Genetics Assoc. and IUFRO Working Parties S2.02-05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Weyerhaeuser Co., Federal Way, WA.

    Google Scholar 

  • Joyce, D. G., & Rehfeldt, G. E. (2013). Climatic niche, ecological genetics and impact of climate change on eastern white pine (Pinus strobus L.): Guidelines for land managers. Forest Ecology and Management, 295, 173–192.

    Article  Google Scholar 

  • Kapeller, S., Lexer, M. J., Gegurek, T., Hiebl, J., & Schueler, S. (2012). Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271, 46–57.

    Article  Google Scholar 

  • Karkkainen, K., Koski, V., & Savolainen, O. (1996). Geographical variation in the inbreeding depression of scots pine. Evolution, 50(1), 111–119.

    Article  PubMed  Google Scholar 

  • Karlsson, B., Wellendorf, H., Roulund, H., & Werner, M. (2001). Genotype x trial interaction and stability across sites in 11 combined provenance and clone experiments with Picea abies in Denmark and Sweden. Canadian Journal of Forest Research, 31, 1826–1836.

    Article  Google Scholar 

  • Kim, I.-S., Kwon, H.-Y., Ryu, K.-O., & Choi, W. Y. (2008). Provenance by site interaction of Pinus densiflora in Korea. Silvae Genetica, 57(3), 131–138.

    Article  CAS  Google Scholar 

  • Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2013). Differential ecophysiological response of a major Mediterranean pine species across a climate gradient. Tree Physiology, 33, 26–36.

    Article  PubMed  Google Scholar 

  • Krakowski, J., & Stoehr, M. U. (2009). Coastal Douglas-fir provenance variation: Patterns and predictions for British Columbia seed transfer. Annals of Forest Science, 66, 811, 10 p.

    Article  Google Scholar 

  • Krauss, K. W., Chambers, J. L., Allen, J. A., Soileau, D. M., Jr., & DeBosier, A. S. (2000). Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. Journal of Coastal Research, 16(1), 153–163.

    Google Scholar 

  • La Farge, T. (1975). Genetic differences in stem form of ponderosa pine grown in Michigan. Silvae Genetica, 23, 211–213.

    Google Scholar 

  • Ladrach, W. E. (1998). Provenance research: The concept, application and achievement. In A. K. Mandal & G. I. Gibson (Eds.), Forest genetics and tree breeding (pp. 16–37). New Delhi: CBS Publishers and Distributors.

    Google Scholar 

  • Lambeth, C. C., McKeand, S., Rousseau, R., & Schmidtling, R. (2005). Planting nonlocal seed sources of loblolly pine - managing benefits and risks. Southern Journal of Applied Forestry, 29(2), 96–104.

    Google Scholar 

  • Lamy, J.-B., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201, 874–886.

    Article  PubMed  Google Scholar 

  • Langlet, O. (1971). Two hundred years of genecology. Taxon, 20, 653–721.

    Article  Google Scholar 

  • Ledig, F. T. (1998). Genetic variation in Pinus. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 251–280). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Leibing, C., van Zonneveld, M., Jarvis, A., & Dvorak, W. (2009). Adaptation of tropical and subtropical pine plantation forestry to climate change: Realignment of Pinus patula and Pinus tecunumanii genotypes to 2020 planting site climates. Scandinavian Journal of Forest Research, 24, 483–493.

    Article  Google Scholar 

  • Leites, L. P., Rehfeldt, G. E., Robinson, A. P., Crookston, N. L., & Jaquish, B. (2012). Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Natural Resource Modeling, 25(3), 409–433.

    Article  Google Scholar 

  • Lesser, M. R., & Parker, W. H. (2004). Genetic variation in Picea glauca for growth and phenological traits from provenance tests in Ontario. Silvae Genetica, 53(4–5), 141–148.

    Article  Google Scholar 

  • Li, P., Beaulieu, J., Corriveau, A., & Bousquet, J. (1993). Genetic variation in juvenile growth and phenology in a white spruce provenance-progeny test. Silvae Genetica, 42(1), 52–60.

    Google Scholar 

  • Lopez, R., Lopez de Heredia, U., Collada, C., Cano, F. J., Emerson, B. C., Cochard, H., & Gil, L. (2013). Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis). Annals of Botany, 111, 1167–1179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manninen, A.-M., Tarhanen, S., Vuorinen, M., & Kainulainen, P. (2002). Comparing the variation of needle and wood terpenoids in scots pine provenances. Journal of Chemical Ecology, 28(1), 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Matyas, C. (1994). Modeling climate change effects with provenance test data. Tree Physiology, 14, 797–804.

    Article  PubMed  Google Scholar 

  • McLane, S. C., & Aitken, S. N. (2012). Whitebark pine (Pinus albicaulis) assisted migration potential: Testing establishment north of the species range. Ecological Applications, 22(1), 142–153.

    Article  PubMed  Google Scholar 

  • McLane, S. C., Daniels, L. D., & Aitken, S. N. (2011). Climate impacts on lodgepole pine (Pinus contorta) radial growth in a provenance experiment. Forest Ecology and Management, 262, 115–123.

    Article  Google Scholar 

  • Morgenstern, M. (2011). Geographic variation in forest trees: Genetic basis and application of knowledge in silviculture. Vancouver: UBC Press.

    Google Scholar 

  • Moura, V. P. G., Dvorak, W. S., & Hodge, G. R. (1998). Provenance and family variation of Pinus oocarpa grown in the Brazilian cerrado. Forest Ecology and Management, 109, 315–322.

    Article  Google Scholar 

  • Munger, T. T., & Morris, W. G. (1936). Growth of Douglas-fir trees of known seed source (Vol. 537, 40 pp). Washington, DC: US Department of Agriculture Technical Bulletin.

    Google Scholar 

  • Mutke, S., Gordo, J., Chambel, M. R., Prada, M. A., Alvarez, D., Iglesias, S., & Gil, L. (2010). Phenotypic plasticity is stronger than adaptative differentiation among Mediterranean stone pine provenances. Forest Systems, 19(3), 354–366.

    Article  Google Scholar 

  • Mylecraine, K. A., Kuser, J. E., Zimmerman, G. L., & Smouse, P. E. (2005). Rangewide provenance variation in Atlantic white-cedar (Chamaecyparis thyoides): Early survival and growth in New Jersey and North Carolina plantations. Forest Ecology and Management, 216, 91–104.

    Article  Google Scholar 

  • Namkoong, G. (1969). Non-optimality of local races. In Proceedings of the 10th southern forest tree improvement conference (pp. 149–153). Houston: Texas Forest Service, Texas A & M University.

    Google Scholar 

  • Naydenov, K. D., Tremblay, F. M., Alexandrov, A., & Fenton, N. J. (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochemical Systematics and Ecology, 33, 1226–1245.

    Article  CAS  Google Scholar 

  • O’Neill, G. A., Hamann, A., & Wang, T. (2008). Accounting for population variation improves estimates of the impact of climate change on species’ growth and distribution. Journal of Applied Ecology, 45(4), 1040–1049.

    Article  Google Scholar 

  • Oleksyn, J., Reich, P. B., Chalupka, W., & Tjoelker, M. G. (1999). Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research, 14(1), 7–17.

    Article  Google Scholar 

  • Oleksyn, J., Zytkowiak, R., Karolewski, P., Reich, P. B., & Tjoelker, M. G. (2000). Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations. Tree Physiology, 20, 837–847.

    Article  PubMed  Google Scholar 

  • Oleszek, W., Stochmal, A., Karolewski, P., Simonet, A. M., Macias, F. A., & Tavea, A. (2002). Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area. Biochemical Systematics and Ecology, 30, 1011–1022.

    Article  CAS  Google Scholar 

  • Pedlar, J. H., McKenney, D. W., Aubin, I., Beardmore, T., Beaulieu, J., Iverson, L., O'Neill, G. A., Winder, R. S., & Ste-Marie, C. (2012). Placing forestry in the assisted migration debate. Bioscience, 62(9), 835–842.

    Article  Google Scholar 

  • Potter, K. M., Hipkins, V. D., Mahalovich, M. F., & Means, R. E. (2015). Nuclear genetic variation across the range of ponderosa pine (Pinus ponderosa): Phylogeographic, taxonomic and conservation implications. Tree Genetics & Genomes, 11(3), 1–23.

    Article  Google Scholar 

  • Rafil, Z. A., Dodd, R. S., & Zavarin, E. (1996). Genetic diversity in foliar terpenoids among natural populations of European black pine. Biochemical Systematics and Ecology, 24(4), 326–339.

    Google Scholar 

  • Rahi, A. A., Bowling, C., & Simpson, D. (2010). A red pine provenance test in northwest Ontario: 48 year results. The Forestry Chronicle, 86(3), 348–353.

    Article  Google Scholar 

  • Read, R. A. (1980). Genetic variation in seedling progeny of ponderosa pine provenances. Forest Science, 26(suppl_2), a0001–z0001.

    Google Scholar 

  • Rehfeldt, G. E. (1977). Growth and cold hardiness of intervarietal hybrids of Douglas-fir. Theoretical and Applied Genetics, 50, 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Rehfeldt, G. E. (1978). Genetic differentiation of Douglas-fir populations from the Northern Rocky Mountains. Ecology, 59(6), 1264–1270.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1979). Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca) populations. I. Idaho and northeast Washington. Heredity, 43, 383–397.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1983). Adaptation of Pinus contorta populations to heterogeneous environments in northern Idaho. Canadian Journal of Forest Research, 13, 405–411.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1988). Ecological genetics of Pinus contorta from the Rocky Mountains (USA): A synthesis. Silvae Genetica, 37(3–4), 131–135.

    Google Scholar 

  • Rehfeldt, G. E. (1989). Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca): A synthesis. Forest Ecology and Management, 28, 203–215.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1990). Genetic differentiation among populations of Pinus ponderosa from the upper Colorado river basin. Botanical Gazette, 151(1), 125–137.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1991). A model of genetic variation for Pinus ponderosa in the Inland Northwest (USA): Applications in gene resource management. Canadian Journal of Forest Research, 21, 1491–1500.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1992). Breeding strategies for Larix occidentalis: Adaptations to the biotic and abiotic environment in relation to improving growth. Canadian Journal of Forest Research, 22, 5–13.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1994a). Evolutionary genetics, the biological species and the ecology of the Interior cedar-hemlock forests. In Proceedings of the interior cedar-hemlock-white pine forests: Ecology and management (pp. 91–100). Pullman: Washington State University.

    Google Scholar 

  • Rehfeldt, G. E. (1994b). Genetic structure of western red cedar populations in the Interior West. Canadian Journal of Forest Research, 24, 670–680.

    Article  Google Scholar 

  • Rehfeldt, G. E. (1997). Quantitative analyses of the genetic structure of closely related conifers with disparate distributions and demographics: The Cupressus arizonica (Cupressaceae) complex. American Journal of Botany, 84(2), 190–200.

    Article  CAS  PubMed  Google Scholar 

  • Rehfeldt, G. E. (1999). Systematics and genetic structure of Washoe pine: Applications in conservation genetics. Silvae Genetica, 48, 167–172.

    Google Scholar 

  • Rehfeldt, G. E., & Gallo, L. A. (2001). Introduction of ponderosa pine and Douglas-fir to Argentina. New Forests, 21, 35–44.

    Article  Google Scholar 

  • Rehfeldt, G. E., & Jaquish, B. (2010). Ecological impacts and management strategies for western larch in the face of climate-change. Mitigation and Adaptation Strategies for Global Change, 15, 283–306.

    Article  Google Scholar 

  • Rehfeldt, G. E., Hoff, R. J., & Steinhoff, R. J. (1984). Geographic patterns of genetic variation in Pinus monticola. Botanical Gazette, 145(2), 229–239.

    Article  Google Scholar 

  • Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L., & Hamilton, D. A., Jr. (1999). Genetic responses to climate in Pinus contorta: Niche breadth, climate change and reforestation. Ecological Monographs, 69(3), 375–407.

    Article  Google Scholar 

  • Rehfeldt, G. E., Tchebakova, N. M., Parfenova, Y. I., Wykoff, W. R., Kuzmina, N. A., & Milyutin, L. I. (2002). Intraspecific responses to climate in Pinus sylvestris. Global Change Biology, 8, 912–929.

    Article  Google Scholar 

  • Rehfeldt, G. E., Tchebakova, N. M., & Parfenova, Y. I. (2004). Genetic responses to climate and climate -change in conifers of the temperate and boreal forests. Recent Research and Development in Genetics Breeding, 1, 113–130.

    Google Scholar 

  • Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014a). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Realized climate niches. Forest Ecology and Management, 324, 126–137.

    Article  Google Scholar 

  • Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014b). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Clines in growth potential. Forest Ecology and Management, 324, 138–146.

    Article  Google Scholar 

  • Rehfeldt, G. E., Jaquish, B. C., Lopez-Upton, J., Saenz-Romero, C., St Clair, J. B., Leites, L. P., & Joyce, D. G. (2014c). Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotuga menziesii: Reforestation. Forest Ecology and Management, 324, 147–157.

    Article  Google Scholar 

  • Rockwood, D. L., Huber, D. A., & White, T. L. (2001). Provenance and family variability in slash pine (Pinus elliottii var. elliottii Engelm.) grown in southern Brazil and northeastern Argentina. New Forests, 21, 115–125.

    Article  Google Scholar 

  • Rossi, S., & Bousquet, J. (2014). The bud break process and its variation among local populations of boreal black spruce. Frontiers in Plant Science, 5, 1–9.

    Article  CAS  Google Scholar 

  • Russell, J. H., & Krakowski, J. (2012). Geographic variation and adaptation to current and future climates of Callitropsis nootkatensis populations. Canadian Journal of Forest Research, 42(12), 2118–2129.

    Article  Google Scholar 

  • Rweyongeza, D. M. (2011). Pattern of genotype-environment interaction in Picea glauca (Moench) Voss in Alberta, Canada. Annals of Forest Science, 68, 245–253.

    Article  Google Scholar 

  • Saenz-Romero, C., Beaulieu, J., & Rehfeldt, G. E. (2011). Altitudinal genetic variation among Pinus patula populations from Oaxaca, Mexico, in growth chambers simulating global warming temperatures. Agorciencia, 45(3), 399–411.

    Google Scholar 

  • Saenz-Romero, C., Rehfeldt, G. E., Soto-Correa, J. C., Agular-Auilar, S., Zamarripa-Morales, V., & Lopez-Upton, J. (2012). Altitudinal genetic variation among Pinus pseudostrobus populations from Michoacan, Mexico. Two location shadehouse test results. Revista Fitotecnia Mexicana, 35(2), 111–121.

    Google Scholar 

  • Savva, Y., Schweingruber, F., Milyutin, L., & Vaganov, E. (2002). Genetic and environmental signals in tree rings from different provenances of Pinus sylvestris L. planted in the southern taiga, central Siberia. Trees, 16, 313–324.

    Article  Google Scholar 

  • Schaberg, P. G., Wilkinson, R. C., Shane, J. B., Donnelly, J. R., & Cali, P. F. (1995). Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiology, 15, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Schmidtling, R. C. (1994). Use of provenance tests to predict response to climate change: Loblolly pine and Norway spruce. Tree Physiology, 14, 805–817.

    Article  PubMed  Google Scholar 

  • Shutyaev, A. M., & Giertych, M. (2000). Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genetica, 49(3), 137–151.

    Google Scholar 

  • Sierra-DeGrado, R., Pando, V., Martinez-Surimendi, P., Penalvo, A., Bascones, E., & Moulia, B. (2008). Biomechanical differences in the stem straightening process among Pinus pinaster provenances. A new approach for early selection of stem straightness. Tree Physiology, 28, 835–846.

    Article  Google Scholar 

  • Sorensen, F. C. (1979). Provenance variation in Pseudotsuga menziesii seedlings from the var. menziesii-var. glauca transition zone in Oregon. Silvae Genetica, 28(2–3), 96–103.

    Google Scholar 

  • Sorensen, F. C. (1983). Geographic variation in seedling Douglas-fir (Pseudotsuga menziesii) from the western Siskiyou Mountains of Oregon. Ecology, 64, 696–702.

    Article  Google Scholar 

  • Sorensen, F. C. (1992). Genetic variation and seed transfer guidelines for lodgepole pine in central Oregon (Res. Pap. PNW-RP-453). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 30p.

    Book  Google Scholar 

  • Sorensen, F. C. (1994). Genetic variation and seed transfer guidelines for ponderosa pine in Central Oregon (Res. Pap. PNW-RP-472). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 24p.

    Google Scholar 

  • St. Clair, J. B. (2006). Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Canadian Journal of Forest Research, 84, 1110–1121.

    Google Scholar 

  • St. Clair, J. B., & Howe, G. T. (2007). Genetic maladaptation of coastal Douglas-fir seedlings to future climates. Global Change Biology, 13, 1441–1454.

    Article  Google Scholar 

  • St. Clair, J. B., Mandel, N. L., & Vance-Borland, K. W. (2005). Genecology of Douglas-fir in western Oregon and Washington. Annals of Botany, 96(7), 1199–1214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, K. & Roche, L. (1974). Genetics of forest ecosystems. 330 pp.

    Google Scholar 

  • Stonecypher, R. W., Piesch, R. F., Helland, G. G., Chapman, J. G., & Reno, H. J. (1996). Results from genetic tests of selected parents of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) in an applied tree improvement program. Forest Science, 42., Monograph(32), 1–35.

    Google Scholar 

  • Sweet, G. B. (1965). Provenance differences in Pacific Coast Douglas-fir. 1. Seed and seedling characteristics. Silvae Genetica, 14, 46–56.

    Google Scholar 

  • Sziklai, O. (1990, August 20–24). Douglas-fir provenance-progeny test at Haney B.C., Canada. P 2.313–2.321. In: Proceedings of joint meeting Western Forest Genetics Association and IUFRO Working Parties S2.02–05, 06,12 and 14 – Douglas-fir, contorta pine, Sitka spruce, and Abies breeding and genetic resources, Olympia, WA. Federal Way, WA: Weyerhaeuser Co.

    Google Scholar 

  • Thomson, A. M., Riddell, C. L., & Parker, W. H. (2009). Boreal forest provenance tests used to predict optimal growth and response to climate change: 2. Black spruce. Canadian Journal of Forest Research, 39(1), 143–153.

    Article  Google Scholar 

  • Turesson, G. (1922). The species and the variety as ecological units. Hereditas, 3, 100–113.

    Article  Google Scholar 

  • Turnbull, J. W., & Griffin, A. R. (1986). Concept of provenance and its relationship to infraspecific classification in forest trees. In B. T. Styles (Ed.), Infraspecific classification of wild and cultivated plants. Oxford: Clarendon Press.

    Google Scholar 

  • Ukrainetz, N. K., O’Neill, G. A., & Jaquish, B. (2011). Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: A case study for interior spruce in British Columbia. Canadian Journal of Forest Research, 41(7), 1452–1464.

    Article  Google Scholar 

  • van Zonneveld, M., Jarvis, A., Dvorak, W., Lema, G., & Leibing, C. (2009). Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and Central America. Forest Ecology and Management, 257, 1566–1576.

    Article  Google Scholar 

  • Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A., & Aitken, S. N. (2006a). Use of response functions in selecting lodgepole pine populations for future climate. Global Change Biology, 12, 2404–2416.

    Article  Google Scholar 

  • Wang, T., O’Neill, G. A., & Aitken, S. N. (2010a). Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications, 20(1), 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Weidman, E. H. (1939). Evidences of racial influences in a 25-year test of ponderosa pine. Journal of Agricultural Research, 59, 855–888.

    Google Scholar 

  • Wells, O. O. (1964). Geographic variation in ponderosa pine. Silvae Genetica, 13(4), 89–103.

    Google Scholar 

  • Wells, O. O., & Wakeley, P. C. (1966). Geographic variation in survival, growth, and fusiform rust infection of planted loblolly pine. Forest Science, 12(suppl_2), a0001–z0001.

    Google Scholar 

  • Wheeler, N. C., & Critchfield, W. B. (1985b). The distribution and botanical characteristics of lodgepole pine. In D. M. Baumgartner, R. G. Krebil, J. T. Arnott, & G. F. Weetman (Eds.), Symposium proceedings. Lodgepole pine: The species and its management, Spokane, Washington, 1984 (pp. 1–14). Pullman, WA: Washington State University, Cooperative Extension Service.

    Google Scholar 

  • Wheeler, N. C., & Neale, D. B. (2013). Landscape genomics: An emerging discipline that can aid forest land managers with planting stock decisions. Mountain Views: Cirmount, 7(1), 10–14.

    Google Scholar 

  • Wheeler, N. C., Kriebel, H. B., Lee, C. H., Read, R. A., & Wright, J. W. (1976). 15-year performance of European black pine in provenance tests in North Central United States. Silvae Genetica, 25(1), 1–6.

    Google Scholar 

  • Wheeler, N. C., Jech, K., Masters, S., Brobst, S. W., Alvarado, A. B., Hoover, A. J., & Snader, K. M. (1992). Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. Journal of Natural Products, 55(4), 432–440.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, N. C., Jech, K. S., Masters, S. A., O’Brien, C. J., Timmons, D. W., Stonecypher, R. W., & Lupkes, A. (1995a). Genetic variation and parameter estimates in Taxus brevifolia (Pacific Yew). Canadian Journal of Forest Research, 25(12), 1913–1927.

    Article  Google Scholar 

  • Wheeler, N. C., Steiner, K. C., Schlarbaum, S. E., & Neale, D. B. (2015). The evolution of forest genetics and tree improvement research in the United States. Journal of Forestry, 113(5), 500–510.

    Article  Google Scholar 

  • White, T. L., & Ching, K. K. (1985). Provenance study of Douglas-Fir in the Pacific northwest region. Silvae Genetica, 34, 2–3.

    Google Scholar 

  • White, T. L., Adams, W. T., & Neale, D. B. (2007). Forest genetics. Cambridge, MA: CABI Publishing.

    Book  Google Scholar 

  • Williams, M. I., & Dumroese, R. K. (2014). Planning the future’s forests with assisted migration. In V. A. Sample & R. P. Bixler (Eds.), Forest conservation and management in the Anthropocene: Conference proceedings. RMRS-P-71 (pp. 133–144). Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.

    Google Scholar 

  • Wright, J. W. (1944). Ecotypic differentiation in red ash. Journal of Forestry, 42, 591–597.

    Google Scholar 

  • Wright, J. W. (1953). A survey of forest genetics research. Journal of Forestry, 51, 330–333.

    Google Scholar 

  • Wright, J. W. (1976). Introduction to forest genetics. New York: Academic Press, 463 pp.

    Google Scholar 

  • Wright, J. W., Lemmien, W. A., & Bright, J. N. (1969). Early growth of ponderosa pine ecotypes in Michigan. Forest Science, 15(2), 121–129.

    Google Scholar 

  • Wright, J. W., Kung, F. H., Read, R. A., Lemmien, W. A., & Bright, J. N. (1971). Genetic variation in Rocky Mountatin Douglas-fir. Silvae Genetica, 20, 54–60.

    Google Scholar 

  • Xie, C., & Ying, C. C. (1995). Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp. latifolia) in Canada. Canadian Journal of Forest Research, 25, 2010–2021.

    Article  Google Scholar 

  • Yanchuk, A. D., Yeh, F. C., & Dancik, B. P. (1988). Variation of stem rust resistance in a lodgepole pine provenance-family plantation. Forest Science, 34, 1067–1075.

    Google Scholar 

  • Yang, J., Pedlar, J. H., McKenney, D. W., & Weersink, A. (2015). The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada. Forest Ecology and Management, 339, 34–43.

    Article  Google Scholar 

  • Ying, C. C., Illingworth, K., & Carlson, M. (1985). Geographic variation of lodgepole pine and its implications for tree improvement in British Columbia. In D. M. Baumgartner, R. G. Krebil, J. T. Arnott, & G. F. Weetman (Eds.), Symposium proceedings. Lodgepole pine: The species and its management, Spokane, Washington, 1984 (pp. 55–60). Pullman: Washington State University, Cooperative Extension Service.

    Google Scholar 

  • Zhang, J. W., Klopfenstein, N. B., & Peterson, G. W. (1997). Genetic variation in disease resistance of Juniperus virginiana and J. scopulorum grown in eastern Nebraska. Silvae Genetica, 46(1), 11–16.

    Google Scholar 

  • Zobel, B., & Talbert, J. (1984). Applied forest tree improvement. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Phenotypic Variation in Natural Populations. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_8

Download citation

Publish with us

Policies and ethics