Skip to main content

Gene Structure and Gene Families

  • Chapter
  • First Online:
  • 993 Accesses

Abstract

Approaches for the discovery of protein-coding genes were described in detail in Chap. 3. These included EST sequencing, RNA-seq, and full genome sequencing. Raw DNA sequences generated by these approaches are assembled into sets that are assumed to come from a single genetic locus. These are often called unigene sets. Currently, it is believed that there may be as many as 50,000 unique genes (unigenes) in conifer genomes, although this number will likely decline as more sequence data and better bioinformatics tools reveal that the number of unigenes has been overestimated. This can result from allelic or alternative splicing differences at a single locus. In this chapter, our goal is to discuss what is known about the structure (introns, exons, promoters, other regulatory regions) of conifer genes and their relationship to one another in gene families. The discussion is organized around functional classes of genes that have been of most interest in conifers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alosi, M. C., & Neale, D. B. (1992). Light-and phytochrome-mediated gene expression in Douglas-fir seedlings. Physiologia Plantarum, 86(1), 71–76.

    Article  CAS  Google Scholar 

  • Alosi, M. C., Neale, D. B., & Kinlaw, C. S. (1990). Expression of cab genes in Douglas-fir is not strongly regulated by light. Plant Physiology, 93(2), 829–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, W., O’Malley, D. M., Whetten, R., & Sederoff, R. R. (1993). A laccase associated with lignification in loblolly pine xylem. Science, 260(5108), 672–672.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, J. W., Beech, R. N., Dancik, B. P., & Strobeck, C. (1994). A genomic clone of a type I cab gene encoding a light harvesting chlorophyll a/b binding protein of photosystem II identified from lodgepole pine. Genome, 37(1), 166–172.

    Article  CAS  PubMed  Google Scholar 

  • Bedon, F., Grima-Pettenati, J., & Mackay, J. (2007). Conifer R2R3-MYB transcription factors: Sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biology, 7(1), 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedon, F., Levasseur, C., Grima-Pettenati, J., Séguin, A., & MacKay, J. (2009). Sequence analysis and functional characterization of the promoter of the Picea glauca Cinnamyl Alcohol Dehydrogenase gene in transgenic white spruce plants. Plant Cell Reports, 28(5), 787–800.

    Article  CAS  PubMed  Google Scholar 

  • Bedon, F., Bomal, C., Caron, S., Levasseur, C., Boyle, B., Mansfield, S. D., et al. (2010). Subgroup 4 R2R3-MYBs in conifer trees: Gene family expansion and contribution to the isoprenoid-and flavonoid-oriented responses. Journal of Experimental Botany, 61(14), 3847–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlmann, J., Steele, C. L., & Croteau, R. (1997). Monoterpene synthases from grand fir (Abies grandis) cDNA isolation, characterization, and functional expression of myrcene synthase, (−)-(4S)-limonene synthase, and (−)-(1S, 5S)-pinene synthase. Journal of Biological Chemistry, 272(35), 21784–21792.

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann, J., Crock, J., Jetter, R., & Croteau, R. (1998a). cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proceedings of the National Academy of Sciences USA, 95, 6756–6761.

    Article  CAS  Google Scholar 

  • Bohlmann, J., Meyer-Gauen, G., & Croteau, R. (1998b). Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proceedings of the National Academy of Sciences, 95(8), 4126–4133.

    Article  CAS  Google Scholar 

  • Bohlmann, J., Phillips, M., Ramachandiran, V., Katoh, S., & Croteau, R. (1999). cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Archives of Biochemistry and Biophysics, 368(2), 232–243.

    Article  CAS  PubMed  Google Scholar 

  • Carlsbecker, A., Sundström, J., Tandre, K., Englund, M., Kvarnheden, A., Johanson, U., & Engström, P. (2003). The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evolution & Development, 5(6), 551–561.

    Article  CAS  Google Scholar 

  • Chang, S., Puryear, J., Funkhouser, E. A., Newton, R. J., & Cairney, J. (1996). Cloning of a cDNA for a chitinase homologue which lacks chitin-binding sites and is down-regulated by water stress and wounding. Plant Molecular Biology, 31(3), 693–699.

    Article  CAS  PubMed  Google Scholar 

  • Clapham, D. H., Kolukisaoglu, H. Ü., Larsson, C. T., Qamaruddin, M., Ekberg, I., Wiegmann-Eirund, C., et al. (1999). Phytochrome types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Molecular Biology, 40(4), 669–678.

    Article  CAS  PubMed  Google Scholar 

  • Côté, C. L., Boileau, F., Roy, V., Ouellet, M., Levasseur, C., Morency, M. J., et al. (2010). Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees. BMC Plant Biology, 10(1), 273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmlinger, M. W., Bolle, C., Batschauer, A., Oelmüller, R., & Mohr, H. (1994). Coaction of blue light and light absorbed by phytochrome in control of glutamine synthetase gene expression in Scots pine (Pinus sylvestris L.) seedlings. Planta, 192(2), 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Fukui, M., Futamura, N., Mukai, Y., Wang, Y., Nagao, A., & Shinohara, K. (2001). Ancestral MADS box genes in sugi, Cryptomeria japonica D. Don (Taxodiaceae), homologous to the B function genes in angiosperms. Plant and Cell Physiology, 42(6), 566–575.

    Article  CAS  PubMed  Google Scholar 

  • Galliano, H., Cabané, M., Eckerskorn, C., Lottspeich, F., Sandermann, H., & Ernst, D. (1993). Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Molecular Biology, 23(1), 145–156.

    Article  CAS  PubMed  Google Scholar 

  • García-Gil, M. R. (2008). Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine. Journal of Molecular Evolution, 67(2), 222–232.

    Article  PubMed  Google Scholar 

  • García-Gil, M. R., Mikkonen, M., & Savolainen, O. (2003). Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Molecular Ecology, 12(5), 1195–1206.

    Article  PubMed  Google Scholar 

  • Geisler, K., Jensen, N. B., Yuen, M. M. S., Madilao, L., & Bohlmann, J. (2016). Modularity of conifer diterpene resin acid biosynthesis: P450 enzymes of different CYP720B clades use alternative substrates and converge on the same products. Plant Physiology, 171, 152–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, G. P., Brown, G. R., & Neale, D. B. (2003). A sequence mutation in the cinnamyl alcohol dehydrogenase gene associated with altered lignification in loblolly pine. Plant Biotechnology Journal, 1(4), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Goldfarb, B., Lanz-Garcia, C., Lian, Z., & Whetten, R. (2003). Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree Physiology, 23(17), 1181–1192.

    Article  CAS  PubMed  Google Scholar 

  • Gramzow, L., Weilandt, L., & Theißen, G. (2014). MADS goes genomic in conifers: Towards determining the ancestral set of MADS-box genes in seed plants. Annals of Botany, 114(7), 1407–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillet-Claude, C., Isabel, N., Pelgas, B., & Bousquet, J. (2004). The evolutionary implications of knox-I gene duplications in conifers: Correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Molecular Biology and Evolution, 21(12), 2232–2245.

    Article  CAS  PubMed  Google Scholar 

  • Hamberger, B., Ohnishi, T., Hamberger, B., Séguin, A., & Bohlmann, J. (2011). Evolution of diterpene metabolism: Sitka spruce CYP720B4 catalyses multiple oxidations in resin acid biosynthesis of conifer defense against insects. Plant Physiology, 157, 1677–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedman, H., Zhu, T., von Arnold, S., & Sohlberg, J. J. (2013). Analysis of the Wuschel-related gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biology, 13(1), 89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison, K. W., Harvie, P. D., Singer, P. B., Brunner, A. F., & Greenwood, M. S. (1990). Nucleotide sequence of the small subunit of ribulose-1, 5-bisphosphate carboxylase from the conifer Larix laricina. Plant Molecular Biology, 14(2), 281–284.

    Article  CAS  Google Scholar 

  • Ingouff, M., Farbos, I., Lagercrantz, U., & von Arnold, S. (2001). PaHB1 is an evolutionary conserved HD-GL2 homeobox gene expressed in the protoderm during Norway spruce embryo development. Genesis, 30(4), 220–230.

    Article  CAS  PubMed  Google Scholar 

  • Ingouff, M., Farbos, I., Wiweger, M., & von Arnold, S. (2003). The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. Journal of Experimental Botany, 54(386), 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, S., & Gustafsson, P. (1990). Type I and type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pine): cDNA cloning and sequence analysis. Plant Molecular Biology, 14(3), 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, S., & Gustafsson, P. (1991). Evolutionary conservation of the chlorophyll a/b-binding proteins cDNAs encoding Type I, II and III LHC I polypeptides from the gymnosperm Scots pine. Molecular and General Genetics MGG, 229(1), 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Jermstad, K. D., Sheppard, L. A., Kinloch, B. B., Delfino-Mix, A., Ersoz, E. S., Krutovsky, K. V., & Neale, D. B. (2006). Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics & Genomes, 2(2), 76.

    Article  Google Scholar 

  • Keeling, C. I., & Bohlmann, J. (2006a). Diterpene resin acids in conifers. Phytochemistry, 67(22), 2415–2423.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, C. I., Weisshaar, S., Ralph, S. G., Jancsik, S., Hamberger, B., Dullat, H. K., & Bohlmann, J. (2011). Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biology, 11(1), 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvarnheden, A., Tandre, K., & Engström, P. (1995). A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Molecular Biology, 27(2), 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Kvarnheden, A., Albert, V. A., & Engström, P. (1998). Molecular evolution of cdc2 pseudogenes in spruce (Picea). Plant Molecular Biology, 36(5), 767–774.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. J., & Xiang, Y. (2011). In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: Gene discovery of the WRKY transcription factors in conifers. In Plant transcription factors (pp. 21–43). New York: Humana Press.

    Chapter  Google Scholar 

  • Liu, J. J., Ekramoddoullah, A. K., & Yu, X. (2003b). Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiologia Plantarum, 119(4), 544–553.

    Article  CAS  Google Scholar 

  • Liu, J. J., Chan, D., Sturrock, R., & Sniezko, R. A. (2014). Genetic variation and population differentiation of the endochitinase gene family in Pinus monticola. Plant Systematics and Evolution, 300(6), 1313–1322.

    Article  CAS  Google Scholar 

  • MacKay, J. J., Liu, W., Whetten, R., Sederoff, R. R., & O'Malley, D. M. (1995). Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: Single gene inheritance, molecular characterization and evolution. Molecular and General Genetics MGG, 247(5), 537–545.

    Article  CAS  PubMed  Google Scholar 

  • MacKay, J. J., O’Malley, D. M., Presnell, T., Booker, F. L., Campbell, M. M., Whetten, R. W., & Sederoff, R. R. (1997). Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proceedings of the National Academy of Sciences, 94(15), 8255–8260.

    Article  CAS  Google Scholar 

  • Martin, D. M., Fäldt, J., & Bohlmann, J. (2004). Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology, 135(4), 1908–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukai, Y., Tazaki, K., Fujii, T., & Yamamoto, N. (1992). Light-independent expression of three photosynthetic genes, cab, rbcS and rbcL, in coniferous plants. Plant and Cell Physiology, 33(7), 859–866.

    CAS  Google Scholar 

  • Nairn, C. J., & Haselkorn, T. (2005). Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist, 166(3), 907–915.

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Reisewitz, P., & Werr, W. (2009). Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Molecular Biology and Evolution, 26(8), 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  • O’Malley, D. M., Porter, S., & Sederoff, R. R. (1992). Purification, characterization, and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiology, 98(4), 1364–1371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oku, T., Sugahara, K., & Tomita, G. (1974). Functional development of photosystems I and II in dark-grown pine seedlings. Plant and Cell Physiology, 15(1), 175–178.

    CAS  Google Scholar 

  • Patzlaff, A., McInnis, S., Courtenay, A., Surman, C., Newman, L. J., Smith, C., et al. (2003a). Characterization of a pine MYB that regulates lignification. The Plant Journal, 36(6), 743–754.

    Article  CAS  PubMed  Google Scholar 

  • Patzlaff, A., Newman, L. J., Dubos, C., Whetten, R. W., Smith, C., McInnis, S., et al. (2003b). Characterisation of PtMYB1, an R2R3-MYB from pine xylem. Plant Molecular Biology, 53(4), 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Peter, G., & Neale, D. (2004). Molecular basis for the evolution of xylem lignification. Current Opinion in Plant Biology, 7(6), 737–742.

    Article  CAS  PubMed  Google Scholar 

  • Ralph, J., MacKay, J. J., Hatfield, R. D., O’Malley, D. M., Whetten, R. W., & Sederoff, R. R. (1997). Abnormal lignin in a loblolly pine mutant. Science, 277(5323), 235–239.

    Article  CAS  PubMed  Google Scholar 

  • Ro, D.-K., Arimura, G.-I., Lau, S. Y. W., Piers, E., & Bohlmann, J. (2005). Loblolly pine abietadienol/abietadienal oxidase PtAO is a multifunctional, multi-substrate cytochrome P450 monooxygenase. Proceedings of the National Academy of Sciences USA, 102, 8060–8065.

    Article  CAS  Google Scholar 

  • Sampedro, J., Carey, R. E., & Cosgrove, D. J. (2006). Genome histories clarify evolution of the expansin superfamily: New insights from the poplar genome and pine ESTs. Journal of Plant Research, 119(1), 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Wuli, B., Sederoff, R., & Whetten, R. (2001). Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). Journal of Plant Research, 114(2), 147–155.

    Article  CAS  Google Scholar 

  • Steele, C. L., Crock, J., Bohlmann, J., & Croteau, R. (1998). Sesquiterpene synthases from grand fir (Abies grandis) comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. Journal of Biological Chemistry, 273(4), 2078–2089.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, K. A., Wegrzyn, J. L., Zimin, A., Puiu, D., Crepeau, M., Cardeno, C., et al. (2016). Sequence of the Sugar Pine Megagenome. Genetics, 204(4), 1613–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundås-Larsson, A., Svenson, M., Liao, H., & Engström, P. (1998). A homeobox gene with potential developmental control function in the meristem of the conifer Picea abies. Proceedings of the National Academy of Sciences, 95(25), 15118–15122.

    Article  Google Scholar 

  • Tandre, K., Albert, V. A., Sundås, A., & Engström, P. (1995). Conifer homologues to genes that control floral development in angiosperms. Plant Molecular Biology, 27(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Tandre, K., Svenson, M., Svensson, M. E., & Engström, P. (1998). Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. The Plant Journal, 15(5), 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, B. S., Wildung, M. R., Vogel, G., & Croteau, R. (1996). Abietadiene synthase from grand fir (Abies grandis) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. Journal of Biological Chemistry, 271(38), 23262–23268.

    Article  CAS  PubMed  Google Scholar 

  • Warren, R. L., Keeling, C. I., Yuen, M. M. S., Raymond, A., Taylor, G. A., Vandervalk, B. P., et al. (2015). Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal, 83(2), 189–212.

    Article  CAS  PubMed  Google Scholar 

  • Whetten, R. W., & Sederoff, R. R. (1992). Phenylalanine ammonia-lyase from loblolly pine purification of the enzyme and isolation of complementary DNA clones. Plant Physiology, 98(1), 380–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H., Echt, C. S., Popp, M. P., & Davis, J. M. (1997). Molecular cloning, structure and expression of an elicitor-inducible chitinase gene from pine trees. Plant Molecular Biology, 33(6), 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Xue, B., Charest, P. J., Devantier, Y., & Rutledge, R. G. (2003). Characterization of a MYBR2R3 gene from black spruce (Picea mariana) that shares functional conservation with maize C1. Molecular Genetics and Genomics, 270(1), 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, N., Mukai, Y., Matsuoka, M., Kano-Murakami, Y., Tanaka, Y., Ohashi, Y., et al. (1991). Light-independent expression of cab and rbcS genes in dark-grown pine seedlings. Plant Physiology, 95(2), 379–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, N., Kojima, K., & Matsuoka, M. (1993). The presence of two types of gene that encode the chlorophyll a/b-binding protein (LHCPII) and their light-independent expression in pine (Pinus thunbergii). Plant and Cell Physiology, 34(3), 457–463.

    CAS  PubMed  Google Scholar 

  • Yamamoto, N., Tada, Y., & Fujimura, T. (1994). The promoter of a pine photosynthetic gene allows expression of a β-glucuronidase reporter gene in transgenic rice plants in a light-independent but tissue-specific manner. Plant and Cell Physiology, 35(5), 773–778.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. H., & Chiang, V. L. (1997). Molecular cloning of 4-coumarate: Coenzyme A ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood. Plant Physiology, 113(1), 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Gene Structure and Gene Families. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_5

Download citation

Publish with us

Policies and ethics