Skip to main content

Paleobotany, Taxonomic Classification, and Phylogenetics

  • Chapter
  • First Online:
The Conifers: Genomes, Variation and Evolution

Abstract

The preceding chapters reviewed our knowledge of genetic diversity in conifers from the genome to populations and species, from SNPs to phenotypic variation in morphological and adaptive traits controlled by dozens or even hundreds of genes. In this chapter we look at the diversity of conifers at the species, genus, and family levels, and the evolutionary relationships among them. As the title of this chapter implies, the scope of discussion is large which will almost assuredly result in the superficial treatment of some areas that have garnered considerable scientific enquiry. Our objective, nevertheless, is to capture current views on the number of extant conifer species, how they are classified, from whence they came, and how they are related to one another. In doing so, we hope to avoid confusion associated with the numerous and often nuanced definitions of terms such as taxonomy, systematics, classification, and phylogenetics (Mayden 1992; Stevens 1994; Singh 2004; Wiley and Lieberman 2011). In the treatment presented here we define taxonomy simply as the discipline of discovery, description, naming, and classification of groups or taxa, typically species, genera, and families. Taxonomy today is based upon, and richly informed by, phylogenetics, the study of the evolutionary relationships between taxa. Current hypotheses of phylogenetic relationships among and within conifer families, and thoughts on the origins of conifers are summarized here, along with estimates of times of divergence for major taxa based on fossil records and molecular clock studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, R. P., Bartel, J. A., & Price, R. A. (2009). A new genus, Hesperocyparis, for the cypresses of the western hemisphere. Phytologia, 91(1), 160–185.

    Google Scholar 

  • Adams, R. P., Bartel, J. A., Terry, R., Callahan, F., & Bisbee, J. (2014). Taxonomy of Hesperocyparis montana, H. revealiana, and H. stephensonii: Evidence from leaf essential oils analyses and DNA sequences. Phytologia, 96(2), 71–83.

    Google Scholar 

  • Alverez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.

    Article  CAS  Google Scholar 

  • Axelrod, D. I. (1980). History of the maritime closed-cone pines, Alta and Baja California (Vol. 120, p. 143). Berkeley: Univ. Calif. Publ. Geol. Sci.

    Google Scholar 

  • Beck, C. B. (1960). The identity of Archaeopteris and Callixylon. Brittonia, 12, 351–368.

    Article  Google Scholar 

  • Beck, C. B. (1988). Origin and evolution of gymnosperms. New York: Columbia University Press.

    Google Scholar 

  • Beck, C. B., & Wight, D. C. (1988). Progymnosperms. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.

    Google Scholar 

  • Biffin, E., Conran, J., & Lowe, A. (2011). Podocarp evolution: A molecular phylogenetic perspective. Ecology of the Podocarpaceae in Tropical Forests, 95, 1–20.

    Google Scholar 

  • Biffin, E., Brodribb, T. J., Hill, R. S., Thomas, P., & Lowe, A. J. (2012). Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B, 279, 341–348.

    Article  PubMed  Google Scholar 

  • Bowe, L. M., Coat, G., & dePamphilis, C. W. (2000). Phylogewny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, 97(8), 4092–4097.

    Article  CAS  Google Scholar 

  • Braukmann, T. W. A., Kuzmina, M., & Stefanovic, S. (2009). Loss of all plastid nhd genes in Gnetales and conifers: Extent and evolutionary significance for the seed plant phylogeny. Current Genetics, 55(3), 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Brunsfeld, S. J., Soltis, P. S., Soltis, D. E., Gadek, P. A., Quinn, C. J., Strenge, D. D., & Ranker, T. A. (1994). Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany, 19(2), 253–262.

    Article  Google Scholar 

  • Burleigh, J. G., & Mathews, S. (2007). Phylogenetic signal in nucleotide data from seed plants: Implications for resolving the seed plant tree of life. International Journal of Plant Sciences, 168.

    Google Scholar 

  • Castresana, J. (2007). Topological variation in single-gene phylogenetic trees. Genome Biology., 8(6), 216. https://doi.org/10.1186/gb-2007-8-6-216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., et al. (1993). Phylogenetics of seed plants: An analysis of nucleic sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden, 80, 528–580.

    Article  Google Scholar 

  • Chaw, S. M., Zharkikh, A., Sung, H. M., Lau, T. C., & Li, W. H. (1997). Molecular phylogeny of extant gymnosperms and seed plant evolution: Analysis of nuclear 18S rRNA sequences. Molecular biology and evolution, 14, 56–68.

    Article  CAS  PubMed  Google Scholar 

  • Chaw, S.-M., Parkinson, C. L., Cheng, Y., Vincent, T. M., & Palmer, J. D. (2000). Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proceedings- National Academy of Sciences USA, 97(8), 4086–4091.

    Article  CAS  Google Scholar 

  • Chen, J., Hao, Z., Xu, H., Yang, L., Liu, G., Sheng, Y., Zheng, C., et al. (2015). The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Frontiers in Plant Science, 6, 447. https://doi.org/10.3389/fpls.2015.00447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Nicolson, R. G., Tripp, K., & Chaw, S.-J. (2000). Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution., 14(3), 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Conran, J. G., Wood, G. G., Martin, P. G., Dowd, J. M., Quinn, C. J., Gadek, P. A., & Price, R. A. (2000). Generic relationships within and between the gymnosperm families Podocarpacaeae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany, 48, 715–724.

    Article  Google Scholar 

  • Critchfield, W. B. (1984a, August 30). Impact of the Pleistocene on the genetic structure of North American conifers. In 8th North American forest biology workshop. Logan, Utah (Edited and Compiled by R. Lanner. pp. 70–118).

    Google Scholar 

  • Cronn, R., Liston, A., Parks, M., Gernandt, D. S., Shen, R., & Mockler, T. (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36(19), e122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de La Torre, J. E., Egan, M. G., Katari, M. S., Brenner, E. D., Stevenson, D. W., Coruzzi, G. M., & DeSalle, R. (2006). ESTimating plant phylogeny: Lessons from partitioning. BMC Evolutionary Biology, 6(1), 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Laubenfels, D. J. (1965). The relationships of Fitzroya cupressoides (Molina) Johnstone and Diselma archeri J.D. Hooker based on morphological considfeations. Phytomorphology, 15, 414–419.

    Google Scholar 

  • De Laubenfels, D. J. (1969). A revision of the Malesian and Pacific rainforest conifers, I. Podocarpaceae, in part. Journal of the Arnold Arboretum, 50, 274–369.

    Article  Google Scholar 

  • De Laubenfels, D. J. (1972). Podocarpaceae, pp. 9-22 in J.-F. Leroy, ed., Flore de Madagascar et des Comores, Gymnospermes. Paris: Museum National d’Histoire Naturelle. (in French).

    Google Scholar 

  • De Laubenfels, D. J. (1985). A taxonomic revision of the genus Podocarpus. Blumea, 30, 251–278.

    Google Scholar 

  • De Laubenfels, D. J. (1987). Revision of the genus Nageia Podocarpaceae. Blumea, 12, 209–211.

    Google Scholar 

  • DeGiorgio, M., Syring, J., Eckert, A. J., Liston, A., Cronn, R., Neale, D. B., & Rosenberg, N. A. (2014). An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines. BMC Evolutionary Biology, 14(1), 67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donoghue, M. J., & Doyle, J. A. (2000). Seed plant phylogeny: demise of the anthophyte hypothesis? Current Biology, 10(3), R106–R109.

    Article  CAS  PubMed  Google Scholar 

  • Eckenwalder, J. E. (1976). Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madrono, 23, 237–256.

    Google Scholar 

  • Eckert, A. J., & Hall, B. D. (2006). Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. Molecular Phylogenetics and Evolution, 40, 166–182.

    Article  CAS  PubMed  Google Scholar 

  • Escapa, I. H., & Catalano, S. A. (2013). Phylogenetic analysis of Araucariaceae: Integrating molecules, morphology, and fossils. International Journal of Plant Sciences, 174(8), 1153–1170.

    Article  Google Scholar 

  • Escapa, I., Cuneo, R., & Axsmith, B. (2008). A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: Implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology, 151, 110–122.

    Article  Google Scholar 

  • Escapa, I. H., Rothwell, G. W., Stockey, R. A., & Cuneo, N. R. (2012). Seed cone anatomy of Cheirolepidiaceae (Conferales): Reinterpreting Pararaucaria patagonica Wieland. American Journal of Botany, 99(6), 1058–1068.

    Article  PubMed  Google Scholar 

  • Farjon, A. (2008). A natural history of conifers. Portland: Timber Press.

    Google Scholar 

  • Farjon, A. (2010). A handbook of the world’s conifers. Leiden, The Netherlands: Brill Academic Publishers.

    Book  Google Scholar 

  • Farjon, A., & Garcia, S. O. (2003). Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany, 90(1), 8–16.

    Article  PubMed  Google Scholar 

  • Farjon, A., & Rushforth, K. D. (1989). A classification of Abies Miller (Pinaceae). Notes Roy Bot Gard Edinburgh, 46(1), 59–79.

    Google Scholar 

  • Farjon, A., Hiep, N. T., Harder, D. K., Loc, P. K., & Averyanov, L. (2002). A new genus and species in Cupressaceae (Coniferales) from northern Vietnam, Xanthocyparis vietnamensis. Novon, 12(2), 179–189.

    Article  Google Scholar 

  • Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Assoc.

    Google Scholar 

  • Florin, R. (1951). Evolution in cordaites and conifers. Acta Horti Gergiani, 15, 285–388.

    Google Scholar 

  • Florin, R. (1955). The systematics of the gymnosperms. In A century of progress in the natural sciences, 1853–1953 (p. 323).

    Google Scholar 

  • Gadek, P. A., Alpers, D. L., Heslewood, M. M., & Quinn, C. J. (2000). Relationships within Cupressaceae sensu lato: A combined morphological and molecular approach. American Journal of Botany, 87(7), 1044–1057.

    Article  CAS  PubMed  Google Scholar 

  • Geada López, G., Kamiya, K., & Harada, K. (2002). Phylogenetic relationships of diploxylon pines (subgenus Pinus) based on plastid sequence data. International Journal of Plant Sciences, 163, 737–747.

    Article  Google Scholar 

  • Gernandt, D. S., Liston, A., & Piñero, D. (2003). Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. Systematic Botany, 28(4), 657–673.

    Google Scholar 

  • Gernandt, D. S., Lopez, G. G., Garcia, S. O., & Liston, A. (2005). Phylogeny and classification of Pinus. Taxon, 54(1), 29–42.

    Article  Google Scholar 

  • Gernandt, D. S., Magallon, S., Lopez, G. G., Flores, O. Z., Willyard, A., & Liston, A. (2008). Use of simultaneous analyses to guide fossil-based calibrations of Pinaceae phylogeny. International Journal of Plant Sciences, 169(8), 1086–1099.

    Article  Google Scholar 

  • Gernandt, D. S., Holman, G., Campbell, C., Parks, M., Mathews, S., Raubeson, L. A., Liston, A., Stockey, R. A., & Rothwell, G. W. (2016). Phylogenetics of extant and fossil Pinaceae: Methods for increasing topological stability. Botany, 94(9), 863–884.

    Article  Google Scholar 

  • Ghimire, B., & Heo, K. (2014). Cladistic analysis of Taxaceae s.l. Plant Systematics and Evolution, 300, 217–223.

    Article  Google Scholar 

  • Gilmore, S., & Hill, K. D. (1997). Relationships of the Wollemi pine (Wollemi nobilis) and a molecular phylogeny of the Auraucariaceae. Telopea, 9, 275–291.

    Article  Google Scholar 

  • Greenwood, D. R., Archibald, S. B., Mathewes, R. W., & Moss, P. T. (2005). Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: Climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences, 42, 167–185.

    Article  Google Scholar 

  • Gugerli, F., Sperisen, C., Buchler, U., Brunner, I., Brodbeck, S., Palmer, J. D., & Qiu, Y.-L. (2001). The evolutionary split of Pinaceae from other conifers: Evidence from an intron loss and multigene phylogeny. Molecular Phylogenetics and Evolution, 21(2), 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Hajibabaei, M., Xia, J., & Drouin, G. (2006). Seed plant phylogeny: Gnetophytes are derived conifers and a sister group to Pinaceae. Molecular Phylogenetics and Evolution., 40(1), 208.

    Article  CAS  PubMed  Google Scholar 

  • Hao, D. C., Huang, B., & Yang, L. (2008a). Phylogenetic relations of the genus Taxus inferred from chloroplast intergenic spacer and nuclear coding DNA. Biological & Pharmaceutical Bulletin, 31(2), 260–265.

    Article  CAS  Google Scholar 

  • Hao, D. C., Xiao, P. G., Huang, B., Ge, G. B., & Yang, L. (2008b). Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution, 276, 89–104.

    Article  CAS  Google Scholar 

  • Harper, C. J., Taylor, T. N., Krings, M., & Taylor, E. L. (2015). Arbuscular mycorrhizal fungi in a voltzialean conifer from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 215, 76–84.

    Article  Google Scholar 

  • Hart, J. A. (1987). A cladistics analysis of conifers: Preliminary results. Journal of the Arnold Arboretum, 68, 269–307.

    Google Scholar 

  • Hayata, B. (1931). The Sciadopityaceae represented by Sciadopitys verticillata Sieb. Et Zucc., an endemic species of Japan. Botanical Magazine (Tokyo), 45, 567–569.

    Article  Google Scholar 

  • He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W., & Lamont, B. B. (2012b). Fire-adapted traits of Pinus arose in the fiery Cretaceous. The New Phytologist, 195, 751–759.

    Google Scholar 

  • Hennig, W. (1950). Grundzuge einer Theorie der phylogenetishchen Systemmatik. Berlin: Deutscher Zentralverlag.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Hernandez-Castillo, G. R., Rothwell, G. W., & Mapes, G. (2001). Thucydiaceae fam. Nov., with a review and reevaluation of Paleozoic walchian conifers. International Journal of Plant Sciences, 162, 1155–1185.

    Article  Google Scholar 

  • Hernandez-Leon, S., Gernandt, D. S., Perez de la Rosa, J. A., & Jardon-Barbolla, L. (2013). Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferred from plastid DNA. PLoS One, 8(7), e70501. https://doi.org/10.1371/journal.pone.0070501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill, R. S., & Brodribb, T. J. (1999). Southern conifers in time and space. Australian Journal of Botany, 47, 639–696.

    Article  Google Scholar 

  • Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (2008). Plant systematics: a phylogenetics approach (3rd ed.). Sunderland: Sinauer Associates, Inc.

    Google Scholar 

  • Kelch, D. G. (1998). Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany, 85, 986.

    Article  CAS  PubMed  Google Scholar 

  • Knapp, M., Mudaliar, R., Havell, D., Wagstaff, S. J., & Lockhart, P. J. (2007). The drowning of New Zealand and the problem of Agathis. Systematic Biology, 56(5), 862–870.

    Article  PubMed  Google Scholar 

  • Krupkin, A. B., Liston, A., & Strauss, S. H. (1996). Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. American Journal of Botany, 83(4), 489–498.

    Article  Google Scholar 

  • Kunzmann, L. (2007). Araucariaceae (Pinopsida): Aspects in palaeobiogeography and palaeobiodiveristy in the Mesozoic. Zoologischer Anzeiger, 246, 257–277.

    Article  Google Scholar 

  • Lawrence, G. H. M. (1951). Taxonomy of vascular plants. New York/Toronto: Macmillan Company.

    Google Scholar 

  • Li, H. (1953). A reclassification of Libocedrus and Cupressaceae. Journal of the Arnold Arboretum, 34, 17–35.

    Google Scholar 

  • Liston, A., Robinson, W. A., Piñero, D., & Alvarez-Buylla, E. R. (1999). Phylogenetics of Pinus(Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer regions sequences. Molecular Phylogenetics and Evolution, 11, 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Liston, A., Parker-Defeniks, M., Syring, J. V., Willyard, A., & Cronn, R. (2007). Interspecific phylogenetic analysis enhances intraspecific phylogeographical inference: A case study in Pinus lambertiana. Molecular Ecology, 16(18), 3926–3937.

    PubMed  Google Scholar 

  • Little, D. P. (2006). Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany, 31(3), 461–480.

    Article  Google Scholar 

  • Little, E. L., Jr., & Critchfield, W. B. (1969). Subdivisions of the genus Pinus (p. 1144). Washington, DC: USDA Forest Service Miscellaneous Publication.

    Google Scholar 

  • Liu, N., Zhu, Y., Wei, Z., Chen, J., Wang, Q., Jian, S., Zhou, D., et al. (2009). Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin, 54, 2648–2655.

    CAS  Google Scholar 

  • Lockwood, J. D., Aleksic, J. M., Zou, J., Wang, J., Liu, J., & Renner, S. S. (2013). A new phylogeny for the genus Picea from plastid, mitochrondrial, and nuclear sequences. Molecular Phylogenetics and Evolution, 69, 717–727.

    Article  PubMed  Google Scholar 

  • Lu, Y., Ran, J.-H., Guo, D.-M., Yang, Z.-Y., & Wang, X.-Q. (2014b). Phylogeny and edivergence times of gymnopserms inferred from single-copy nuclear genes. PLoS One, 9(9), e107679. https://doi.org/10.1371/journal.pone.0107679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magallón, S., & Sanderson, M. J. (2002). Relationships among seed plants inferred from highly conserved genes: Sorting conflicting phylogenetic signals among ancient lineages. American Journal of Botany, 89(12), 1991–2006.

    Article  PubMed  Google Scholar 

  • Mao, K., Hao, G., Liu, J., Adams, R. P., & Milne, R. I. (2010). Diversification and biogeography of Juniperus (Cupressaceae): Variable diversification rates and multiple intercontinental dispersals. New Phytologist, 188(1), 254–272.

    Article  CAS  PubMed  Google Scholar 

  • Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R. R., & Renner, S. S. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7793–7798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayden, R. L. (1992). Systematics, historical ecology, and North American freshwater fishes. Stanford: Stanford University Press.

    Google Scholar 

  • Meyer-Berthaud, B., Scheckler, S. E., & Wendt, J. (1999). Archaeopteris is the earliest known modern tree. Nature, 398, 700–701.

    Article  CAS  Google Scholar 

  • Miller, C. N., Jr. (1977). Mesozoic conifers. The Botanical Review, 43(2), 217.

    Article  Google Scholar 

  • Miller, C. N., Jr. (1988). The Origin of modern conifer families. In C. B. Beck (Ed.), Origin and evolution of gymnosperms. New York: Columbia University Press.

    Google Scholar 

  • Nathorst, A. G. (1908). Palaobotanische Mitteilungen, 7: Uber Palissya, Stachyotaxus und Palaeotaxus. Kungliga Svenska Veterskapsakademiens Handlingar, 43: 3–37. (from Rothwell et al. 2012).

    Google Scholar 

  • Ohsawa, T., Nishida, M., & Nishida, H. (1991). Structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien IX. A petrified cone of Sciadopitys from the Upper Cretaceous of Hokkaido. Journal of Phytogeography and Taxonomy., 39, 97–105.

    Google Scholar 

  • Parks, M., Cronn, R., & Liston, A. (2009). Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biology, 7, 84. https://doi.org/10.1186/1741-7007-7-84. http://www.biomedcentral.com/1741-7007/7/84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks, M., Cronn, R., & Liston, A. (2012). Separating the wheat from the chaff: Mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evolutionary Biology, 2012(12), 100. http://www.biomedcentral.com/1471-2148/12/100.

    Article  Google Scholar 

  • Pilger, R. (1926). Klasse Coniferae, pp. 121–403. In A. Engler & R. Prantl (Eds.), Die natÃœrelichen Pflanzenfamilien (ed. 2, vol. e). Leipsiz: Verlag von Wilhelm Englemann. (in German).

    Google Scholar 

  • Pittermann, J., Stuart, S. A., Dawson, T. E., & Moreau, A. (2012). Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences, 109(24), 9647–9652.

    Article  CAS  Google Scholar 

  • Price, R. A., Liston, A., & Strauss, S. H. (1998). Phylogeny and systematics of Pinus. P. In D. M. Richardson (Ed.), Ecology and biogeography of Pinus (pp. 49–68). Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Quinn, C. J. (1982). Taxonomy of Cacrydium. Australian Journal of Botany, 30, 311–320.

    Article  Google Scholar 

  • Rothwell, G. W. (1988). Cordaitales. In C. B. Beck (Ed.), Origin and evolution of gymnopserms. New York: Columbia University Press.

    Google Scholar 

  • Rothwell, G. W., Mapes, G., & Mapes, R. H. (1997). Late Paleozoic conifers of North America: Structure, diversity and occurrences. Review of Palaeobotany and Palynology, 95, 95–113.

    Article  Google Scholar 

  • Rothwell, G. W., Mapes, G., & Hernandez-Castillo, G. R. (2005). Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54(3), 733–750.

    Article  Google Scholar 

  • Rothwell, G. W. G. M., Stockey, R. A., & Hilton, J. (2012). The seed cone Eathiestrobus Gen. Nov.: Fossil evidence for a Jurassic origin of Pinaceae. American Journal of Botany, 99(4), 708–720.

    Article  PubMed  Google Scholar 

  • Ruhsam, M., Rai, H. S., Mathews, S., Ross, T. G., Graham, S. W., Raubeson, L. A., Mei, W., et al. (2015). Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria. Molecular Ecology Resources, 15(5), 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  • Saladin, B., Leslie, A. B., Wüest, R. O., Litsios, G., Conti, E., Salamin, N., & Zimmermann, N. E. (2017). Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. BMC Evolutionary Biology, 17(1), 95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Semerikova, S. A., & Semerikov, V. L. (2014). Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Russian journal of genetics, 50(1), pp.7–19.

    Google Scholar 

  • Scheckler, S. E. (2003). 2003. Consequences of rapid expansion of late Devonian forests. Session No. 146. Geological Society of America Abstracts with Programs, 35(6), 385.

    Google Scholar 

  • Schlarbaum, S. E., & Tsuchiya, T. (1984b). Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution, 147, 29–54.

    Article  Google Scholar 

  • Setoguchi, H., Osawa, T. A., Pintaud, J.-C., Jaffre, T., & Veillon, J.-M. (1998). Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany, 85(11), 1507–1516.

    Article  CAS  PubMed  Google Scholar 

  • Sinclair, W. T., Mill, R. R., Gardner, M. F., Woltz, P., Jaffré, T., Preston, J., et al. (2002). Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution, 233(1–2), 79–104.

    Article  CAS  Google Scholar 

  • Singh, G. (2004). Plant systematics: An integrated approach. Enfield: Science Publishers.

    Google Scholar 

  • Stefanovic, S., Jager, M., Deutsch, J., Broutin, J., & Masselot, M. (1998). Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany, 85, 688–697.

    Article  CAS  Google Scholar 

  • Stevens, P. F. (1994). The development of biological systematics: Antoine-Laurent de Jussieu, nature, and the natural system. New York: Columbia University Press.

    Google Scholar 

  • Stockey, R. A. (1982). The Araucariaceae: An evolutionary perspective. Review of Palaebotany and Palynology, 37, 133–154.

    Article  Google Scholar 

  • Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., & Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. American Journal of Botany, 99(2), 349–364.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, S. H., Doerksen, A. H., & Byrne, J. R. (1990). Evolutionary relationships of Douglas-fir and its relatives from DNA restriction fragment analysis. Canadian Journal of Botany, 68, 1502–1510.

    Article  CAS  Google Scholar 

  • Syring, J., Willyard, A., Cronn, R., & Liston, A. (2005). Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. American Journal of Botany, 92, 2086–2100.

    Article  PubMed  Google Scholar 

  • Syring, J., Farrell, K., Businsky, R., Cronn, R., & Liston, A. (2007). Widespread genealogical nonmonomphyly in species of Pinus subgenus Strobus. Systematic Biology, 56(2), 163–181.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, T. N., Taylor, E. L., & Krings, M. (2009). The biology and evolution of fossil plants (2nd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Terry, R. G., & Adams, R. P. (2015). A molecular re-examination of phylogenetic relationships among Juniperus, Cupressus, and the Hesperocyparis-Callitropsis-Xanthrocyparis clades of Cupressaceae. Phytologia, 97(1), 67–75.

    Google Scholar 

  • Terry, R. G., Bartel, J. A., & Adams, R. P. (2012). Phylogenetic relationships among the New World cypresses (Hesperocyparis; Cupressaceae): Evidence from noncoding chloroplast DNA sequences. Plant Systematics and Evolution, 298(10), 1987–2000.

    Article  Google Scholar 

  • The Angiosperm Phylogeny Website. (n.d..) http://www.mobot.org/MOBOT/research/APweb/.

  • Townrow, J. A. (1967). On Rissikia and Mataia – Podocarpaceous conifers from the lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania, 101, 103–136.

    Google Scholar 

  • Wang, X.-R., Tsumura, Y., Yoshimaru, H., Nagasaka, K., & Szmidt, A. E. (1999). Phylogenetic relationships of Eurasia pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. American Journal of Botany, 86, 1742–1753.

    Article  CAS  PubMed  Google Scholar 

  • Whittall, J. B., Syring, J., Parks, M., Buenrostro, J., Dick, C., Liston, A., & Cronn, R. (2010). Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Molecular Ecology, 19, 100–114.

    Article  CAS  PubMed  Google Scholar 

  • Wiley, E. O., & Lieberman, B. S. (2011). Phylogenetics: the theory of phylogenetic systematics (2nd ed.). Hoboken: Wiley-Blackwell.

    Book  Google Scholar 

  • Willyard, A. J. S., Gernandt, D. S., Liston, A., & Cronn, R. (2007). Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution, 24(1), 90–101.

    Article  PubMed  CAS  Google Scholar 

  • Willyard, A., Cronn, R., & Liston, A. (2009). Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Molecular Phylogenetics and Evolution, 52(2), 498–511.

    Article  CAS  PubMed  Google Scholar 

  • Willyard, A., Gernandt, D. S., Potter, K., Hipkins, V., Marquardt, P., Mahalovich, M. F., Langer, S. K., Telewski, F. W., Cooper, B., Douglas, C., & Finch, K. (2017). Pinus ponderosa: a checkered past obscured four species. American Journal of Botany, 104(1), 161–181.

    Article  PubMed  Google Scholar 

  • Wolfe, J. A. (1969). Neogene floristic and vegetational history of the Pacific Northwest. Madrono, 20, 83–110.

    Google Scholar 

  • Xiang, Q. P., Wei, R., Shao, Y. Z., Yang, Z. Y., Wang, X. Q., & Zhang, X. C. (2015). Phylogenetic relationships, possible ancient hybridization, and biogeographic history of Abies (Pinaceae) based on data from nuclear, plastid, and mitochondrial genomes. Molecular Phylogenetics and Evolution, 82, 1–14.

    Article  PubMed  Google Scholar 

  • Yang, Z.-Y., Ran, J.-H., & Wang, X.-Q. (2012). Three genome-based phylogeny of Cupressaceae s.l.: Further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution, 64(3), 452–470.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Paleobotany, Taxonomic Classification, and Phylogenetics. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_16

Download citation

Publish with us

Policies and ethics