Skip to main content

Quantitative Trait Dissection

  • Chapter
  • First Online:
Book cover The Conifers: Genomes, Variation and Evolution

Abstract

The inheritance of phenotypes (traits) in any organism can generally be classified in either of two ways: (1) those inherited by a single gene and (2) those inherited from multiple genes. Multiple terms have been used to describe these two conditions. For single-gene traits, qualitative, monogenic, and Mendelian are used, while traits controlled by multiple genes are referred to as quantitative, polygenic, or complex. In forest genetics, qualitative and quantitative are most often used (White et al. 2007b) and will be generally used in this chapter. In conifers, both qualitative and quantitative inheritance of traits are observed, but by far most traits of interest are quantitatively inherited. For example, traits related to yield, wood properties, and abiotic adaptation are just about always highly quantitative. There are far fewer examples of qualitatively inherited traits, one of the most notable being resistance to white pine blister rust in several species of Pinus subgenus Strobus (Chap. 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartholomé, J., Bink, M. C., van Heerwaarden, J., Chancerel, E., Boury, C., Lesur, I., et al. (2016). Linkage and association mapping for two major traits used in the maritime pine breeding program: Height growth and stem straightness. PLoS One, 11(11), e0165323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beaulieu, J., Doerksen, T., Boyle, B., Clément, S., Deslauriers, M., Beauseigle, S., et al. (2011). Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics, 188(1), 197–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Brendel, O., Pot, D., Plomion, C., Rozenberg, P., & Guehl, J. M. (2002). Genetic parameters and QTL analysis of δ13C and ring width in maritime pine. Plant, Cell & Environment, 25(8), 945–953.

    Article  CAS  Google Scholar 

  • Brown, G. R., Bassoni, D. L., Gill, G. P., Fontana, J. R., Wheeler, N. C., Megraw, R. A., et al. (2003). Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics, 164(4), 1537–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, G. R., Gill, G. P., Kuntz, R. J., Langley, C. H., & Neale, D. B. (2004). Nucleotide diversity and linkage disequilibrium in loblolly pine. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15255–15260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budde, K. B., Heuertz, M., Hernanzez-Serrano, A., Pausas, J. G., Vendramin, G. G., Verdu, M., Gonzalez-Martinez, S. c. (2014). In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster). New Phyt. 201:230–241.

    Google Scholar 

  • Chagné, D., Lalanne, C., Madur, D., Kumar, S., Frigério, J. M., Krier, C., et al. (2002). A high density genetic map of maritime pine based on AFLPs. Annals of Forest Science, 59(5–6), 627–636.

    Article  Google Scholar 

  • Chancerel, E., Lepoittevin, C., Le Provost, G., Lin, Y. C., Jaramillo-Correa, J. P., Eckert, A. J., et al. (2011). Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine. BMC Genomics, 12(1), 368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chancerel, E., Lamy, J. B., Lesur, I., Noirot, C., Klopp, C., Ehrenmann, F., et al. (2013). High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination. BMC Biology, 11(1), 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatre, V. E., Byram, T. D., Neale, D. B., Wegrzyn, J. L., & Krutovsky, K. V. (2013). Genetic structure and association mapping of adaptive and selective traits in the East Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genetics & Genomes, 9(5), 1161–1178.

    Article  Google Scholar 

  • Costa, P., Pot, D., Dubos, C., Frigerio, J. M., Pionneau, C., Bodenes, C., et al. (2000). A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theoretical and Applied Genetics, 100(1), 39–48.

    Article  CAS  Google Scholar 

  • Cumbie, W. P., Eckert, A., Wegrzyn, J., Whetten, R., Neale, D., & Goldfarb, B. (2011). Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity, 107(2), 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Torre, A. R. et al. (2018). Genomic architecture of complex traits in loblolly pine. [in progress].

    Google Scholar 

  • De Miguel, M., Cabezas, J. A., de María, N., Sánchez-Gómez, D., Guevara, M. Á., Vélez, M. D., et al. (2014). Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification. BMC Genomics, 15(1), 464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devey, M. E., Carson, S. D., Nolan, M. F., Matheson, A. C., Te Riini, C., & Hohepa, J. (2004a). QTL associations for density and diameter in Pinus radiata and the potential for marker-aided selection. Theoretical and Applied Genetics, 108(3), 516–524.

    Article  CAS  PubMed  Google Scholar 

  • Devey, M. E., Groom, K. A., Nolan, M. F., Bell, J. C., Dudzinski, M. J., Old, K. M., et al. (2004b). Detection and verification of quantitative trait loci for resistance to Dothistroma needle blight in Pinus radiata. Theoretical and Applied Genetics, 108(6), 1056–1063.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, S. K., Nolan, M., Li, W., Bell, C., Wu, H. X., & Southerton, S. G. (2010). Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics, 185(4), 1477–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert, A. J., Bower, A. D., Wegrzyn, J. L., Pande, B., Jermstad, K. D., Krutovsky, K. V., et al. (2009a). Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics, 182(4), 1289–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert, A. J., Wegrzyn, J. L., Cumbie, W. P., Goldfarb, B., Huber, D. A., Tolstikov, V., et al. (2012a). Association genetics of the loblolly pine (Pinus taeda, Pinaceae) metabolome. New Phytologist, 193(4), 890–902.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, A. J., Wegrzyn, J. L., Liechty, J. D., Lee, J. M., Cumbie, W. P., Davis, J. M., et al. (2013b). The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae). Genetics, 195(4), 1353–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emebiri, L. C., Devey, M. E., Matheson, A. C., & Slee, M. U. (1998). Age-related changes in the expression of QTLs for growth in radiata pine seedlings. Theoretical and Applied Genetics, 97(7), 1053–1061.

    Article  CAS  Google Scholar 

  • Falconer, D. S. (1960). Introduction to quantitative genetics. Edinburgh/London: Oliver and Boyd.

    Google Scholar 

  • González-Martínez, S. C., Wheeler, N. C., Ersoz, E., Nelson, C. D., & Neale, D. B. (2007). Association genetics in Pinus taeda L I. Wood property traits. Genetics, 175(1), 399–409.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Martínez, S. C., Huber, D., Ersoz, E., Davis, J. M., & Neale, D. B. (2008). Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity, 101(1), 19.

    Article  PubMed  CAS  Google Scholar 

  • Goto, Y., Kondo, T., Kuramoto, N., Ide, T., Yamamoto, K., Inaoka, K., & Yasueda, H. (2003). Mapping the gene encoding cry j 1; a major Cryptomeria japonica pollen allergen. Silvae Genetica, 52, 3–4.

    Google Scholar 

  • Groover, A., Devey, M., Fiddler, T., Lee, J., Megraw, R., Mitchel-Olds, T., et al. (1994). Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics, 138(4), 1293–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, C., Zhang, H., Zhang, L., Li, X., Deng, J., & Jiang, T. (2011). Construction of genetic linkage maps of larch (Larix kaempferi × Larix gmelini) by RAPD markers and mapping of QTLS for larch. Biotechnology & Biotechnological Equipment, 25(1), 2197–2202.

    Article  CAS  Google Scholar 

  • Gwaze, D. P., Zhou, Y., Reyes-Valdes, M. H., Al-Rababah, M. A., & Williams, C. G. (2003a). Haplotypic QTL mapping in an outbred pedigree. Genetics Research, 81(1), 43–50.

    Article  CAS  Google Scholar 

  • Holliday, J. A., Ritland, K., & Aitken, S. N. (2010). Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytologist, 188(2), 501–514.

    Article  PubMed  Google Scholar 

  • Holliday, J. A., Wang, T., & Aitken, S. (2012). Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3: Genes, Genomes. Genetics, 2(9), 1085–1093.

    CAS  Google Scholar 

  • Hurme, P., Sillanpää, M. J., Arjas, E., Repo, T., & Savolainen, O. (2000). Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics, 156(3), 1309–1322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jermstad, K. D., Bassoni, D. L., Jech, K. S., Wheeler, N. C., & Neale, D. B. (2001a). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir I. Timing of vegetative bud flush. Theoretical and Applied Genetics, 102(8), 1142–1151.

    Article  CAS  Google Scholar 

  • Jermstad, K. D., Bassoni, D. L., Wheeler, N. C., Anekonda, T. S., Aitken, S. N., Adams, W. T., & Neale, D. B. (2001b). Main content area mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir II. Spring and fall cold-hardiness. Theoretical and Applied Genetics, 102(8), 1152–1158.

    Article  CAS  Google Scholar 

  • Jermstad, K. D., Bassoni, D. L., Jech, K. S., Ritchie, G. A., Wheeler, N. C., & Neale, D. B. (2003). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir III. Quantitative trait loci-by-environment interactions. Genetics, 165(3), 1489–1506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya, Z., Sewell, M. M., & Neale, D. B. (1999). Identification of quantitative trait loci influencing annual height-and diameter-increment growth in loblolly pine (Pinus taeda L.). Theoretical and Applied Genetics, 98(3–4), 586–592.

    Article  CAS  Google Scholar 

  • Khan, M. A., & Korban, S. S. (2012). Association mapping in forest trees and fruit crops. Journal of Experimental Botany, 63(11), 4045–4060.

    Article  CAS  PubMed  Google Scholar 

  • Knott, S. A., Neale, D. B., Sewell, M. M., & Haley, C. S. (1997). Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theoretical and Applied Genetics, 94(6–7), 810–820.

    Article  Google Scholar 

  • Kole, C. (Ed.). (2007). Forest trees (Vol. 7). Berlin, Germany: Springer Science & Business Media.

    Google Scholar 

  • Kruglyak, L., & Lander, E. S. (1995). A nonparametric approach for mapping quantitative trait loci. Genetics, 139(3), 1421–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krutovsky, K. V., Troggio, M., Brown, G. R., Jermstad, K. D., & Neale, D. B. (2004). Comparative mapping in the Pinaceae. Genetics, 168(1), 447–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang, H., Richardson, T. E., Carson, S. D., & Bongarten, B. C. (1999a). Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don. II. Genetics of viability genes. Theoretical and Applied Genetics, 99(1–2), 140–146.

    Article  Google Scholar 

  • Kubisiak, T. L., Nelson, C. D., Nowak, J., & Friend, A. L. (1999). Genetic linkage mapping of genomic regions conferring tolerance to high aluminum in slash pine. Journal of Sustainable Forestry, 10(1–2), 69–78.

    Article  Google Scholar 

  • Kumar, S., Spelman, R. J., Garrick, D. J., Richardson, T. E., Lausberg, M., & Wilcox, P. L. (2000). Multiple-marker mapping of wood density loci in an outbred pedigree of radiata pine. Theoretical and Applied Genetics, 100(6), 926–933.

    Article  Google Scholar 

  • Lamara, M., Raherison, E., Lenz, P., Beaulieu, J., Bousquet, J., & MacKay, J. (2016). Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce. New Phytologist, 210(1), 240–255.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265(5181), 2037–2048.

    Article  CAS  PubMed  Google Scholar 

  • Lepoittevin, C., Harvengt, L., Plomion, C., & Garnier-Géré, P. (2012). Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes, 8(1), 113–126.

    Article  Google Scholar 

  • Lerceteau, E., Plomion, C., & Andersson, B. (2000). AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: A preliminary study. Molecular Breeding, 6(5), 451–458.

    Article  CAS  Google Scholar 

  • Li, Z., Vikneswaran, G., Li, X., Davis, J. M., & Casella, G. (2012a). Simultaneous SNP identification in association studies with missing data. Annals of Applied Statistics, 6, 432–456.

    Article  Google Scholar 

  • Li, Z., Hallingbäck, H. R., Abrahamsson, S., Fries, A., Gull, B. A., Sillanpää, M. J., & García-Gil, M. R. (2014). Functional multi-locus QTL mapping of temporal trends in scots pine wood traits. G3: Genes, Genomes, Genetics, 4(12), 2365–2379.

    Article  Google Scholar 

  • Li, Y., Wilcox, P., Telfer, E., Graham, N., & Stanbra, L. (2016). Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions. Tree Genetics & Genomes, 12(4), 63.

    Article  Google Scholar 

  • Lind, M., Källman, T., Chen, J., Ma, X. F., Bousquet, J., Morgante, M., et al. (2014). A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS One, 9(7), e101049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, M., Krutovsky, K. V., Nelson, C. D., West, J. B., Reilly, N. A., & Loopstra, C. A. (2017). Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics & Genomes, 13(3), 57.

    Article  CAS  Google Scholar 

  • Marguerit, E., Bouffier, L., Chancerel, E., Costa, P., Lagane, F., Guehl, J. M., et al. (2014). The genetics of water-use efficiency and its relation to growth in maritime pine. Journal of Experimental Botany, 65(17), 4757–4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markussen, T., Tusch, A., Stephan, B. R., & Fladung, M. (2004). Identification of molecular markers for selected wood properties of Norway spruce Picea abies L.(Karst.) I. Wood density. Silvae Genetica, 53(1–6), 45–50.

    Article  Google Scholar 

  • Markussen, T., Tusch, A., Stephan, B. R., & Fladung, M. (2005). Identification of molecular markers for selected wood properties of Norway spruce Picea abies L.(Karst.) II. Extractives content. Silvae Genetica, 54(1–6), 145–152.

    Article  Google Scholar 

  • Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828–9832.

    Article  CAS  Google Scholar 

  • Moraga-Suazo, P., Orellana, L., Quiroga, P., Balocchi, C., Sanfuentes, E., Whetten, R. W., et al. (2014). Development of a genetic linkage map for Pinus radiata and detection of pitch canker disease resistance associated QTLs. Trees, 28(6), 1823–1835.

    Article  CAS  Google Scholar 

  • Moriguchi, Y., Ujino-Ihara, T., Uchiyama, K., Futamura, N., Saito, M., Ueno, S., et al. (2012). The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genomics, 13(1), 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriguchi, Y., Uchiyama, K., Ueno, S., Ujino-Ihara, T., Matsumoto, A., Iwai, J., et al. (2016). A high-density linkage map with 2560 markers and its application for the localization of the male-sterile genes ms3 and ms4 in Cryptomeria japonica D. Don. Tree Genetics & Genomes, 12(3), 57.

    Article  Google Scholar 

  • Neale, D. B., & Kremer, A. (2011). Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12(2), 111.

    Article  CAS  PubMed  Google Scholar 

  • Neale, D. B., & Savolainen, O. (2004). Association genetics of complex traits in conifers. Trends in Plant Science, 9(7), 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Neale, D. B., & Williams, C. G. (1991). Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Canadian Journal of Forest Research, 21(5), 545–554.

    Article  CAS  Google Scholar 

  • Neale, D. B., Devey, M. E., Jermstad, K. D., Ahuja, M. R., Alosi, M. C., & Marshall, K. A. (1992). Use of DNA markers in forest tree improvement research. New Forests, 6(1–4), 391–407.

    Article  Google Scholar 

  • Neale, D. B., Kinlaw, C. S., & Sewell, M. M. (1994). Genetic mapping and DNA sequencing of the loblolly pine genome. International Journal of Forest Genetics.

    Google Scholar 

  • Neale, D. B., Sewell, M. M., & Brown, G. R. (2002). Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine. Annals of Forest Science, 59(5–6), 595–605.

    Article  Google Scholar 

  • Neale, D. B., Wegrzyn, J. L., Stevens, K. A., Zimin, A. V., Puiu, D., Crepeau, M. W., et al. (2014). Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology, 15(3), R59. http://genomebiology.com/2014/15/3/R59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neale, D. B., McGuire, P. E., Wheeler, N. C., Stevens, K. A., Crepeau, M. W., Cardeno, C., et al. (2017a). The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3: Genes, Genomes, Genetics, 7(9), 3157–3167.

    Article  CAS  Google Scholar 

  • Nowicka, A., Ukalska, J., Simińska, J., & Szyp-Borowska, I. (2013). Characterization and mapping of QTL used in breeding of Scots pine (Pinus sylvestris L.). Folia Forestalia Polonica, Seria A-Forestry, 55(4), 168–173.

    Google Scholar 

  • Palle, S. R., Seeve, C. M., Eckert, A. J., Wegrzyn, J. L., Neale, D. B., & Loopstra, C. A. (2013). Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms. Tree Physiology, 33(7), 763–774.

    Article  CAS  PubMed  Google Scholar 

  • Parchman, T. L., Gompert, Z., Mudge, J., Schilkey, F. D., Benkman, C. W., & Buerkle, C. A. (2012). Genome-wide association genetics of an adaptive trait in lodgepole pine. Molecular Ecology, 21(12), 2991–3005.

    Article  CAS  PubMed  Google Scholar 

  • Pelgas, B., Bousquet, J., Meirmans, P. G., Ritland, K., & Isabel, N. (2011). QTL mapping in white spruce: Gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics, 12(1), 145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plomion, C., O’Malley, D. M., & Durel, C. E. (1995). Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theoretical and Applied Genetics, 90(7–8), 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  • Plomion, C., Durel, C. E., & O’Malley, D. M. (1996). Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theoretical and Applied Genetics, 93(5–6), 849–858.

    Article  CAS  PubMed  Google Scholar 

  • Pot, D., Rodrigues, J. C., Rozenberg, P., Chantre, G., Tibbits, J., Cahalan, C., et al. (2006). QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genetics & Genomes, 2(1), 10–24.

    Article  Google Scholar 

  • Prunier, J., Pelgas, B., Gagnon, F., Desponts, M., Isabel, N., Beaulieu, J., & Bousquet, J. (2013). The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics, 14(1), 368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada, T., Gopal, V., Cumbie, W. P., Eckert, A. J., Wegrzyn, J. L., Neale, D. B., et al. (2010). Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics, 186(2), 677–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesada, T., Resende, M. F., Jr., Muñoz, P., Wegrzyn, J. L., Neale, D. B., Kirst, M., et al. (2014). Mapping fusiform rust resistance genes within a complex mating design of loblolly pine. Forests, 5(2), 347–362.

    Article  Google Scholar 

  • Raherison, E. S., Giguère, I., Caron, S., Lamara, M., & MacKay, J. J. (2015). Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures. New Phytologist, 207(1), 172–187.

    Article  CAS  PubMed  Google Scholar 

  • Remington, D. L., & O'Malley, D. M. (2000). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution, 54(5), 1580–1589.

    Article  CAS  PubMed  Google Scholar 

  • Ritland, K., Krutovsky, K. V., Tsumura, Y., Pelgas, B., Isabel, N., & Bousquet, J. (2011). Genetic mapping in conifers. In Genetics, genomics and breeding of conifers (pp. 196–238).

    Google Scholar 

  • Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 8(6), 552–560.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sewell, M. M., & Neale, D. B. (2000). Mapping quantitative traits in forest trees. In Molecular biology of woody plants (pp. 407–423). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Sewell, M. M., Bassoni, D. L., Megraw, R. A., Wheeler, N. C., & Neale, D. B. (2000). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theoretical and Applied Genetics, 101(8), 1273–1281.

    Article  CAS  Google Scholar 

  • Sewell, M. M., Davis, M. F., Tuskan, G. A., Wheeler, N. C., Elam, C. C., Bassoni, D. L., & Neale, D. B. (2002). Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theoretical and Applied Genetics, 104(2–3), 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, S. H., Bousquet, J., Hipkins, V. D., & Hong, Y. P. (1992). Biochemical and molecular genetic markers in biosystematic studies of forest trees. In Population Genetics of Forest Trees (pp. 125–158). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Thavamanikumar, S., Southerton, S. G., Bossinger, G., & Thumma, B. R. (2013). Dissection of complex traits in forest trees—Opportunities for marker-assisted selection. Tree Genetics & Genomes, 9(3), 627–639.

    Article  Google Scholar 

  • Thoday, J. M. (1961). Location of polygenes. Nature, 191(4786), 368.

    Article  Google Scholar 

  • Uchiyama, K., Iwata, H., Moriguchi, Y., Ujino-Ihara, T., Ueno, S., Taguchi, Y., et al. (2013). Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PLoS One, 8(11), e79866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ujino-Ihara, T., Iwata, H., Taguchi, Y., & Tsumura, Y. (2012). Identification of QTLs associated with male strobilus abundance in Cryptomeria japonica. Tree Genetics & Genomes, 8(6), 1319–1329.

    Article  Google Scholar 

  • Ukrainetz, N. K., Ritland, K., & Mansfield, S. D. (2008). Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genetics & Genomes, 4(2), 159–170.

    Article  Google Scholar 

  • Wang, Y., Jia, Q., Zhang, L., Zhang, Z., & Zhang, H. (2015). Allelic variation in Cinnamyl alcohol dehydrogenase (LoCAD) associated with wood properties of Larix olgensis. Forests, 6(5), 1649–1665.

    Article  Google Scholar 

  • Weng, C., Kubisiak, T., Nelson, C., & Stine, M. (2002). Mapping quantitative trait loci controlling early growth in a (longleaf pine× slash pine)× slash pine BC 1 family. Theoretical and Applied Genetics, 104(5), 852–859.

    Article  CAS  PubMed  Google Scholar 

  • Westbrook, J. W., Resende, M. F., Munoz, P., Walker, A. R., Wegrzyn, J. L., Nelson, C. D., et al. (2013). Association genetics of oleoresin flow in loblolly pine: Discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytologist, 199(1), 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Westbrook, J. W., Chhatre, V. E., Wu, L. S., Chamala, S., Neves, L. G., Muñoz, P., et al. (2014). An annotated consensus genetic map for Pinus taeda L. and extent of linkage disequilibrium in three genotype-phenotype discovery populations. bioRxiv, 012625.

    Google Scholar 

  • Westbrook, J. W., Walker, A. R., Neves, L. G., Munoz, P., Resende, M. F., Neale, D. B., et al. (2015). Discovering candidate genes that regulate resin canal number in Pinus taeda stems by integrating genetic analysis across environments, ages, and populations. New Phytologist, 205(2), 627–641.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, N. C., Jermstad, K. D., Krutovsky, K., Aitken, S. N., Howe, G. T., Krakowski, J., & Neale, D. B. (2005). Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir IV. Cold-hardiness QTL verification and candidate gene mapping. Molecular Breeding, 15(2), 145–156.

    Article  CAS  Google Scholar 

  • White, T. L., Adams, W. T., & Neale, D. B. (2007). Forest genetics. Wallingford: CABI Publisher.

    Google Scholar 

  • Wilcox, P. L., Echt, C. E., & Burdon, R. D. (2007). Gene-assisted selection applications of association genetics for forest tree breeding. In Association Mapping in Plants (pp. 211–247). New York, NY: Springer.

    Chapter  Google Scholar 

  • Williams, C. G., & Neale, D. B. (1992). Conifer wood quality and marker-aided selection: A case study. Canadian Journal of Forest Research, 22(7), 1009–1017.

    Article  Google Scholar 

  • Xiong, J. S., McKeand, S. E., Isik, F., Wegrzyn, J., Neale, D. B., Zeng, Z. B., et al. (2016). Quantitative trait loci influencing forking defects in an outbred pedigree of loblolly pine. BMC Genetics, 17(1), 138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazdani, R., Nilsson, J. E., Plomion, C., & Mathur, G. (2003). Marker trait association for autumn cold acclimation and growth rhythm in Pinus sylvestris. Scandinavian Journal of Forest Research, 18(1), 29–38.

    Article  Google Scholar 

  • Yoshimaru, H., Ohba, K., Tsurumi, K., Tomaru, N., Murai, M., Mukai, Y., et al. (1998). Detection of quantitative trait loci for juvenile growth, flower bearing and rooting ability based on a linkage map of sugi (Cryptomeria japonica D. Don). Theoretical and Applied Genetics, 97(1–2), 45–50.

    Article  CAS  Google Scholar 

  • Zobel, B., & Talbert, J. (1984). Applied forest tree improvement. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neale, D.B., Wheeler, N.C. (2019). Quantitative Trait Dissection. In: The Conifers: Genomes, Variation and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-46807-5_11

Download citation

Publish with us

Policies and ethics