Skip to main content

A Free Energy Foundation of Semantic Similarity in Automata and Languages

  • Conference paper
  • First Online:
  • 1092 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9939))

Abstract

This paper develops a free energy theory from physics including the variational principles for automata and languages and also provides algorithms to compute the energy as well as efficient algorithms for estimating the nondeterminism in a nondeterministic finite automaton. This theory is then used as a foundation to define a semantic similarity metric for automata and languages. Since automata are a fundamental model for all modern programs while languages are a fundamental model for the programs’ behaviors, we believe that the theory and the metric developed in this paper can be further used for real-word programs as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The factor 2, intuitively, comes from the fact that we “stretch”, by a factor of 2, a run in finite automaton M to correspond it to a walk in graph \({\hat{M}}\). A somewhat more efficient way to compute \({{{\mathcal {E}}}}(M_V)\) is to construct an \(m\times m\) Gurevich matrix \(\mathbf{M}'\) where m is the number of states in M such that \(\mathbf{M}'_{ij}=0\) if there is no transition from \(p_i\) to \(p_j\) in M, else \(\mathbf{M}'_{ij}=\sum _{a:(p_i,a,p_j)\in T} e^{V(p_i,a,p_j)}\). Herein, \(p_1,\cdots , p_m\) are all states in M. One can show that \({{{\mathcal {E}}}}(M_V)=\ln \lambda '\) where \(\lambda '\) is the Perron-Frobenius eigenvalue of \(\mathbf{M}'\). We omit the details.

References

  1. Chartrand, G., Kubicki, G., Schultz, M.: Graph similarity, distance in graphs. Aequationes Math. 55(1), 129–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1(2), 91–112 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cui, C., Dang, Z., Fischer, T.R.: Typical paths of a graph. Fundam. Inform. 110( 1–4), 95–109 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and programs. Theor. Comput. Sci. 498, 58–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information rate of some classes of non-regular languages: an automata-theoretic approach. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 232–243. Springer, Heidelberg (2014)

    Google Scholar 

  6. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Execution information rate for some classes of automata. Inf. Comput. 246, 20–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dang, Z., Dementyev, D., Fischer, T.R., Hutton III, W.J.: Security of numerical sensors in automata. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 76–88. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  8. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with low computational complexity. Appl. Math. Comput. 182(1), 447–459 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Delvenne, J.-C., Libert, A.-S.: Centrality measures and thermodynamic formalism for complex networks. Phys. Rev. E 83, 046117 (2011)

    Article  Google Scholar 

  10. ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geometry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 517–526. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gurevich, B.M.: A variational characterization of one-dimensional countable state gibbs random fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 68(2), 205–242 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibarra, O.H., Cui, C., Dang, Z., Fischer, T.R.: Lossiness of communication channels modeled by transducers. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 224–233. Springer, Heidelberg (2014)

    Google Scholar 

  14. Koslicki, D.: Topological entropy of DNA sequences. Bioinformatics 27(8), 1061–1067 (2011)

    Article  Google Scholar 

  15. Koslicki, D., Thompson, D.J.: Coding sequence density estimation via topological pressure. J. Math. Biol. 70(1), 45–69 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Li, Q., Dang, Z.: Sampling automata and programs. Theor. Comput. Sci. 577, 125–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Naval, S., Laxmi, V., Rajarajan, M., Gaur, M.S., Conti, M.: Employing program semantics for malware detection. IEEE Trans. Inf. Forensics Secur. 10(12), 2591–2604 (2015)

    Article  Google Scholar 

  18. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics. Cambridge University Press/Cambridge Mathematical Library, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Sarig, O.M.: Thermodynamic formalism for countable Markov shifts. Ergodic Theor. Dyn. Syst. 19, 1565–1593 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sarig, O.M.: Lecture notes on thermodynamic formalism for topological Markov shifts (2009)

    Google Scholar 

  21. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  22. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics. Springer, New York (1982)

    Book  MATH  Google Scholar 

  24. Zager, L.A., Verghese, G.C.: Graph Similarity Scoring and Matching. Appl. Math. Lett. 21(1), 86–94 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Jean-Charles Delvenne, David Koslicki, Daniel J. Thompson, Eric Wang, William J. Hutton III, and Ali Saberi for discussions. We would also like to thank the seven referees for suggestions and comments that have improved the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cewei Cui or Zhe Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Cui, C., Dang, Z. (2016). A Free Energy Foundation of Semantic Similarity in Automata and Languages. In: Amsaleg, L., Houle, M., Schubert, E. (eds) Similarity Search and Applications. SISAP 2016. Lecture Notes in Computer Science(), vol 9939. Springer, Cham. https://doi.org/10.1007/978-3-319-46759-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46759-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46758-0

  • Online ISBN: 978-3-319-46759-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics