Advertisement

Domain Graph for Sentence Similarity

  • Fumito KonakaEmail author
  • Takao Miura
Conference paper
  • 723 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9939)

Abstract

In this work we propose a new method for word similarity. Assuming that each word corresponds to a unit of semantics, called synset, with categorical features, called domain, we construct a domain graph of a synset which is all the hypernyms which belong to the domain of the synset. Here we take an advantage of domain graphs to reflect semantic aspect of words. In experiments we show how well the domain graph approach goes well with word similarity. Then we extend the domain graph in sentence similarity independent of BOW. In addition we assess the execution time in terms of the task and show the significant improvements.

Keywords

Domain graph Synsets Similarity 

References

  1. 1.
    Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising WordNet domains hierarchy: semantics, coverage, and balancing. In: COLING 2004 Workshop on “Multilingual Linguistic Resources”, pp. 101–108 (2004)Google Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Google Scholar
  3. 3.
    Cohen, E., et al.: Finding interesting associations without support pruning. IEEE Trans. Knowl. Data Eng. 13(1), 64–78 (2001)CrossRefGoogle Scholar
  4. 4.
    Das, D., Smith, N.A.: Paraphrase identification as probabilistic quasi-synchronous recognition. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 1, pp. 468–476. Association for Computational Linguistics (2009)Google Scholar
  5. 5.
    Deerwester, S., Dumais, S., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391407 (1990)CrossRefGoogle Scholar
  6. 6.
    Eyecioglu, A., Keller, B.: ASOBEK: Twitter paraphrase identification with simple overlap features and SVMs. In: Proceedings of SemEval (2015)Google Scholar
  7. 7.
    Finkeltsein, L., et al.: Placing search in context: the concept revisited. In: Proceedings of the 10th International Conference on World Wide Web. ACM, 2001. pp. 406–414Google Scholar
  8. 8.
    Finlayson, M.A.: Java libraries for accessing the Princeton WordNet: comparison and evaluation. In: Proceedings of the 7th Global Wordnet Conference, Tartu, Estonia (2014)Google Scholar
  9. 9.
    Guo, W., Diab, M.: Modeling sentences in the latent space. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 864–872. Association for Computational Linguistics (2012)Google Scholar
  10. 10.
    Konaka, F., Miura, T.: Textual similarity for word sequences. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 244–249. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25087-8_23 CrossRefGoogle Scholar
  11. 11.
    Li, Y., et al.: Sentence similarity based on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Wang, P.: Assessing sentence similarity using wordnet based word similarity. J. Softw. 8(6), 1451–1458 (2013)Google Scholar
  13. 13.
    Meng, L., Huang, R., Gu, J.: A review of semantic similarity measures in wordnet. Int. J. Hybrid Inf. Technol. 6(1), 1–12 (2013)Google Scholar
  14. 14.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  15. 15.
    Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 10 (2009)CrossRefGoogle Scholar
  16. 16.
    Richens, T.: Anomalies in the WordNet verb hierarchy. In: Proceedings of the 22nd International Conference on Computational Linguistics, vol. 1, pp. 729–736. Association for Computational Linguistics (2008)Google Scholar
  17. 17.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  18. 18.
    Xu, W., Callison-Burch, C., Dolan, W.B.: SemEval-2015 Task 1: paraphrase and semantic similarity in Twitter (PIT). In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval) (2015)Google Scholar
  19. 19.
    Yang, D., Powers, W.M.W.: Verb similarity on the taxonomy of WordNet. Masaryk University (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Advanced SciencesHOSEI UniversityKoganeiJapan

Personalised recommendations