Skip to main content

Mesenchymal Stem Cell Treatment in Mice Models of Systemic Lupus Erythematosus

  • Chapter
  • First Online:
Mesenchymal Stem Cells and Immunomodulation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Systemic Lupus Erythematosus (SLE) is a complex autoimmune inflammatory disease causing a diverse clinical spectrum of organ damage such as kidney and liver failure. The control of the immunological deregulation and repair of the vascular integrity to prevent organ damage are keys for treatment. Available chemotherapy options are toxic and are not efficient in controlling inflammation and vasculitis.

Mesenchymal Stem Cells (MSCs) have been shown to have potent immune-regulatory properties. Exogenously introduced human MSCs do not cause adverse effects, providing a remarkable safety and feasibility profile in clinical trials. The wide variabilities in the outcomes of clinical studies increased the desire of the scientists to review the designs and outcomes of preclinical animal studies. Using SLE mouse models that have specific immunological abnormalities may help us design better MSC human clinical trials. This chapter reviews the previous studies performed on animal models of SLE using syngeneic, allogeneic, or xenogeneic MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Neill S, Cervera R (2010) Systemic lupus erythematosus. Best Pract Res Clin Rheumatol 24:841–855

    Article  PubMed  Google Scholar 

  2. Barile-Fabris L, Hernandez-Cabrera MF, Barragan-Garfias JA (2014) Vasculitis in systemic lupus erythematosus. Curr Rheumatol Rep 16:440

    Article  CAS  PubMed  Google Scholar 

  3. Ball LM, Bernardo ME, Roelofs H, van Tol MJ, Contoli B, Zwaginga JJ, Avanzini MA, Conforti A, Bertaina A, Giorgiani G, Jol-van der Zijde CM, Zecca M, Le Blanc K, Frassoni F, Egeler RM, Fibbe WE, Lankester AC, Locatelli F (2013) Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III-IV acute graft-versus-host disease. Br J Haematol 163:501–509

    Article  CAS  PubMed  Google Scholar 

  4. Ennis J, Gotherstrom C, Le Blanc K, Davies JE (2008) In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 10:174–181

    Article  CAS  PubMed  Google Scholar 

  5. Freedman MS, Bar-Or A, Atkins HL, Karussis D, Frassoni F, Lazarus H, Scolding N, Slavin S, Le Blanc K, Uccelli A (2010) The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult Scler 16:503–510

    Article  PubMed  Google Scholar 

  6. Le Blanc K, Samuelsson H, Lonnies L, Sundin M, Ringden O (2007) Generation of immunosuppressive mesenchymal stem cells in allogeneic human serum. Transplantation 84:1055–1059

    Article  PubMed  Google Scholar 

  7. Ringden O, Le Blanc K (2011) Mesenchymal stem cells for treatment of acute and chronic graft-versus-host disease, tissue toxicity and hemorrhages. Best Pract Res Clin Haematol 24:65–72

    Article  CAS  PubMed  Google Scholar 

  8. Bonfield TL, Caplan AI (2010) Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov Med 9:337–345

    PubMed  Google Scholar 

  9. Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299:L760–L770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    Article  CAS  PubMed  Google Scholar 

  11. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M (2015) Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev. doi:10.1007/s12015-014-9583-3

    PubMed  Google Scholar 

  12. Good RA (2002) Cellular immunology in a historical perspective. Immunol Rev 185:136–158

    Article  PubMed  Google Scholar 

  13. Huang P, Gebhart N, Richelson E, Brott TG, Meschia JF, Zubair AC (2014) Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation. Cytotherapy. doi:10.1016/j.jcyt.2014.05.007

    Google Scholar 

  14. Ikehara S (2002) Bone marrow transplantation: a new strategy for intractable diseases. Drugs Today (Barc) 38:103–111

    Article  Google Scholar 

  15. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525

    Article  PubMed  CAS  Google Scholar 

  16. Nasef A, Mathieu N, Chapel A, Frick J, Francois S, Mazurier C, Boutarfa A, Bouchet S, Gorin NC, Thierry D, Fouillard L (2007) Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84:231–237

    Article  CAS  PubMed  Google Scholar 

  17. Rakonczay Z Jr, Vag J, Foldes A, Nagy K, Nagy A, Hegyi P, Varga G (2014) Chronic inflammation in the pancreas and salivary glands--lessons from similarities and differences in pathophysiology and treatment modalities. Curr Pharm Des 20:1104–1120

    Article  CAS  PubMed  Google Scholar 

  18. Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R (2010) Mesenchymal stem cells for clinical application. Vox Sang 98:93–107

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, Xu T, Le A, Shi S (2009) Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells 27:1421–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Zhao ZY (2014) Research advances on immunoregulation and anti-inflammation function of mesenchymal stem cells and their application in treatment of renal diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 43:372–378

    CAS  PubMed  Google Scholar 

  21. Zhou H, Jin Z, Liu J, Yu S, Cui Q, Yi D (2008) Mesenchymal stem cells might be used to induce tolerance in heart transplantation. Med Hypothesis 70:785–787

    Article  CAS  Google Scholar 

  22. Bai L, Lennon DP, Caplan AI, DeChant A, Hecker J, Kranso J, Zaremba A, Miller RH (2012) Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci 15:862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tyndall A (2014) Mesenchymal stem cell treatments in rheumatology: a glass half full? Nat Rev Rheumatol 10:117–124

    Article  CAS  PubMed  Google Scholar 

  24. Carrion F, Nova E, Ruiz C, Diaz F, Inostroza C, Rojo D, Monckeberg G, Figueroa FE (2010) Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19:317–322

    Article  CAS  PubMed  Google Scholar 

  25. Zhou H, Guo M, Bian C, Sun Z, Yang Y, Zeng Y, Ai H, Zhao RC (2010) Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 16:403–412

    Article  CAS  PubMed  Google Scholar 

  26. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM (2000) Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18:307–316

    CAS  PubMed  Google Scholar 

  27. Devine SM, Peter S, Martin BJ, Barry F, McIntosh KR (2001) Mesenchymal stem cells: stealth and suppression. Cancer J 7(Suppl 2):S76–S82

    PubMed  Google Scholar 

  28. Lombardo E, DelaRosa O, Mancheno-Corvo P, Menta R, Ramirez C, Buscher D (2009) Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 15:1579–1589

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Li Y, Huang L, Yang J, Yang R, Deng W, Liang B, Dai L, Meng O, Gao L, Chen X, Shen J, Tang Y, Zhang X, Hou J, Ye J, Chen K, Cai Z, Wu Y, Shen H (2014) Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial. Cell Transplant 23:1293–1303

    Article  PubMed  Google Scholar 

  30. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, Cavinato RA, Todeschini M, Solini S, Sonzogni A, Perico N, Remuzzi G, Noris M (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–3946

    Article  CAS  PubMed  Google Scholar 

  31. Singh RP, Dinesh R, Elashoff D, de Vos S, Rooney RJ, Patel D, La Cava A, Hahn BH (2010) Distinct gene signature revealed in white blood cells, CD4(+) and CD8(+) T cells in (NZBx NZW) F1 lupus mice after tolerization with anti-DNA Ig peptide. Genes Immun 11:294–309

    Article  CAS  PubMed  Google Scholar 

  32. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I (2010) Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther 12(2):R53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA (1998) Decreased production of TGF-β by lymphocytes from patients with systemic lupus erythematosus. J Immunol 160:2539–2545

    CAS  PubMed  Google Scholar 

  34. Ronnblom L (2010) Potential role of IFNα in adult lupus. Arthritis Res Ther 12(Suppl 1):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ronnblom L, Eloranta ML, Alm GV (2006) The type I interferon system in systemic lupus erythematosus. Arthritis Rheum 54:408–420

    Article  PubMed  CAS  Google Scholar 

  36. Tanaka Y, Saito K, Shirakawa F, Ota T, Suzuki H, Eto S, Yamashita U (1988) Production of B cell-stimulating factors by B cells in patients with systemic lupus erythematosus. J Immunol 141:3043–3049

    CAS  PubMed  Google Scholar 

  37. Funauchi M, Yu H, Sugiyama M, Ikoma S, Ohno M, Kinoshita K, Hamada K, Kanamaru A (1999) Increased interleukin-4 production by NK T cells in systemic lupus erythematosus. Clin Immunol 92:197–202

    Article  CAS  PubMed  Google Scholar 

  38. Singh RR (2003) IL-4 and many roads to lupuslike autoimmunity. Clin Immunol 108(2):73–79

    Article  CAS  PubMed  Google Scholar 

  39. Truedsson L, Bengtsson AA, Sturfelt G (2007) Complement deficiencies and systemic lupus erythematosus. Autoimmunity 40:560–566

    Article  CAS  PubMed  Google Scholar 

  40. Horwitz DA, Zheng SG, Gray JD (2008) Natural and TGF-β-induced Foxp3+CD4+ CD25+ regulatory T cells are not mirror images of each other. Trends Immunol 29:429–435

    Article  CAS  PubMed  Google Scholar 

  41. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara JL, Cooke KR, Pan L, Krenger W (1996) The immunopathophysiology of acute graft-versus-host-disease. Stem Cells 14:473–489

    Article  CAS  PubMed  Google Scholar 

  43. Ferrara JL, Cooke KR, Teshima T (2003) The pathophysiology of acute graft-versus-host disease. Int J Hematol 78:181–187

    Article  CAS  PubMed  Google Scholar 

  44. Chan GW, Foss FM, Klein AK, Sprague K, Miller KB (2003) Reduced-intensity transplantation for patients with myelodysplastic syndrome achieves durable remission with less graft-versus-host disease. J Blood Bone Marrow Transplant 9:753–759

    Article  Google Scholar 

  45. Mehling A, Loser K, Varga G, Metze D, Luger TA, Schwarz T, Grabbe S, Beissert S (2001) Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med 194:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramanujam M, Davidson A (2008) BAFF blockade for systemic lupus erythematosus: will the promise be fulfilled? Immunol Rev 223:156–174

    Article  CAS  PubMed  Google Scholar 

  47. Zhou K, Zhang H, Jin O, Feng X, Yao G, Hou Y, Sun L (2008) Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell Mol Immunol 5:417–424

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tsukamoto H, Nagafuji K, Horiuchi T, Miyamoto T, Aoki K, Takase K, Henzan H, Himeji D, Koyama T, Miyake K, Inoue Y, Nakashima H, Otsuka T, Tanaka Y, Nagasawa K, Harada M (2006) A phase I-II trial of autologous peripheral blood stem cell transplantation in the treatment of refractory autoimmune disease. Ann Rheum Dis 65:508–514

    Article  CAS  PubMed  Google Scholar 

  49. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kean TJ, Duesler L, Young RG, Dadabayev A, Olenyik A, Penn M, Wagner J, Fink DJ, Caplan AI, Dennis JE (2012) Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell. J Drug Target 20:23–32

    Article  PubMed  CAS  Google Scholar 

  51. Lin P, Correa D, Kean TJ, Awadallah A, Dennis JE, Caplan AI (2014) Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol Ther 22:160–168

    Article  CAS  PubMed  Google Scholar 

  52. English K (2013) Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 91:19–26

    Article  CAS  PubMed  Google Scholar 

  53. Bukulmez H, Bilgin A, Bebek G, Caplan AI, Jones O (2014) Immunomodulatory factors produced by mesenchymal stem cells after in vitro priming with danger signals. Arthritis Rheumatol 66:S163

    Article  Google Scholar 

  54. Bukulmez H, Bilgin A, Caplan AI, Jones O (2014) Prevention of late stage renal failure in BXSB SLE mouse model with human bone marrow derived mesenchymal stem cell treatment. Arthritis Rheumatol 66:S149

    Article  Google Scholar 

  55. Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312

    Article  CAS  PubMed  Google Scholar 

  56. Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3:20

    Article  PubMed  PubMed Central  Google Scholar 

  57. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5:e10088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Waterman RS, Henkle SL, Betancourt AM (2012) Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 7:e45590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andrews BS, Eisenberg RA, Theofilopoulos AN, Izui S, Wilson CB, McConahey PJ, Murphy ED, Roths JB, Dixon FJ (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215

    Article  CAS  PubMed  Google Scholar 

  60. Helyer BJ, Howie JB (1963) Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature 197:197

    Article  CAS  PubMed  Google Scholar 

  61. Bender AT, Wu Y, Cao Q, Ding Y, Oestreicher J, Genest M, Akare S, Ishizaka ST, Mackey MF (2014) Assessment of the translational value of mouse lupus models using clinically relevant biomarkers. Translat Res 163:515–532

    Article  CAS  Google Scholar 

  62. Sang A, Yin Y, Zheng YY, Morel L (2012) Animal models of molecular pathology systemic lupus erythematosus. Prog Mol Biol Transl Sci 105:321–370

    Article  CAS  PubMed  Google Scholar 

  63. Rudofsky UH, Evans BD, Balaban SL, Mottironi VD, Gabrielsen AE (1993) Differences in expression of lupus nephritis in New Zealand mixed H-2z homozygous inbred strains of mice derived from New Zealand black and New Zealand white mice. Origins and initial characterization. Lab Invest 68:419–426

    CAS  PubMed  Google Scholar 

  64. Mohan C (1998) Murine lupus: pathogenic mechanisms and genetic origins. Ann Acad Med Singapore 27:29–34

    CAS  PubMed  Google Scholar 

  65. Mohan C, Morel L, Yang P, Wakeland EK (1997) Genetic dissection of systemic lupus erythematosus pathogenesis: Sle2 on murine chromosome 4 leads to B cell hyperactivity. J Immunol 159:454–465

    CAS  PubMed  Google Scholar 

  66. Morel L, Croker BP, Blenman KR, Mohan C, Huang G, Gilkeson G, Wakeland EK (2000) Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains. Proc Natl Acad Sci U S A 97:6670–6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fairhurst AM, Mathian A, Connolly JE, Wang A, Gray HF, George TA, Boudreaux CD, Zhou XJ, Li QZ, Koutouzov S, Banchereau J, Wakeland EK (2008) Systemic IFN-α drives kidney nephritis in B6.Sle123 mice. Eur J Immunol 38:1948–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci U S A 90:1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dixon FJ, Andrews BS, Eisenberg RA, McConahey PJ, Theofilopoulos AN, Wilson CB (1978) Etiology and pathogenesis of a spontaneous lupus-like syndrome in mice. Arthritis Rheum 21(5 Suppl):S64–S67

    Article  CAS  PubMed  Google Scholar 

  70. Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz D (1996) Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98:1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amoura Z, Chabre H, Koutouzov S, Lotton C, Cabrespines A, Bach JF, Jacob L (1994) Nucleosome-restricted antibodies are detected before anti-dsDNA and/or antihistone antibodies in serum of MRL-Mp lpr/lpr and +/+ mice, and are present in kidney eluates of lupus mice with proteinuria. Arthritis Rheum 37:1684–1688

    Article  CAS  PubMed  Google Scholar 

  72. Stetler DA, Sipes DE, Jacob ST (1985) Anti-RNA polymerase I antibodies in sera of MRL lpr/lpr and MRL +/+ autoimmune mice. Correlation of antibody production with delayed onset of lupus-like disease in MRL +/+ mice. J Exp Med 162:1760–1770

    Article  CAS  PubMed  Google Scholar 

  73. Gharavi AE, Mellors RC, Elkon KB (1989) IgG anti-cardiolipin antibodies in murine lupus. Clin Exp Immunol 78:233–238

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirata D, Iwamoto M, Yoshio T, Okazaki H, Masuyama J, Mimori A, Minota S (2000) Nucleolin as the earliest target molecule of autoantibodies produced in MRL/lpr lupus-prone mice. Clin Immunol 97:50–58

    Article  CAS  PubMed  Google Scholar 

  75. Greenwood DL, Gitlits VM, Alderuccio F, Sentry JW, Toh BH (2002) Autoantibodies in neuropsychiatric lupus. Autoimmunity 35:79–86

    Article  CAS  PubMed  Google Scholar 

  76. Moore PM, Joshi I, Ghanekar SA (1994) Affinity isolation of neuron-reactive antibodies in MRL/lpr mice. J Neurosci Res 39:140–147

    Article  CAS  PubMed  Google Scholar 

  77. Lake R, Staines N (1986) DNA-binding antibodies derived from autoimmune MRL mice fail to induce clinical changes when administered to healthy animals. Agents Actions 19:306–308

    Article  CAS  PubMed  Google Scholar 

  78. Chan OT, Hannum LG, Haberman AM, Madaio MP, Shlomchik MJ (1999) A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 189:1639–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pawar RD, Ramanjaneyulu A, Kulkarni OP, Lech M, Segerer S, Anders HJ (2007) Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 18:1721–1731

    Article  CAS  PubMed  Google Scholar 

  80. Sakic B, Szechtman H, Denburg JA (1997) Neurobehavioral alterations in autoimmune mice. Neurosci Biobehav Rev 21:327–340

    Article  CAS  PubMed  Google Scholar 

  81. Haas C, Ryffel B, Le Hir M (1997) IFN-γ is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol 158:5484–5491

    CAS  PubMed  Google Scholar 

  82. Santoro TJ, Benjamin WR, Oppenheim JJ, Steinberg AD (1983) The cellular basis for immune interferon production in autoimmune MRL-Ipr/Ipr mice. J Immunol 131:265–268

    CAS  PubMed  Google Scholar 

  83. Cash H, Relle M, Menke J, Brochhausen C, Jones SA, Topley N, Galle PR, Schwarting A (2010) Interleukin 6 (IL-6) deficiency delays lupus nephritis in MRL-Faslpr mice: the IL-6 pathway as a new therapeutic target in treatment of autoimmune kidney disease in systemic lupus erythematosus. J Rheumatol 37:60–70

    Article  CAS  PubMed  Google Scholar 

  84. Tang B, Matsuda T, Akira S, Nagata N, Ikehara S, Hirano T, Kishimoto T (1991) Age-associated increase in interleukin 6 in MRL/lpr mice. Int Immunol 3:273–278

    Article  CAS  PubMed  Google Scholar 

  85. Boswell JM, Yui MA, Burt DW, Kelley VE (1988) Increased tumor necrosis factor and IL-1 beta gene expression in the kidneys of mice with lupus nephritis. J Immunol 141:3050–3054

    CAS  PubMed  Google Scholar 

  86. Lemay S, Mao C, Singh AK (1996) Cytokine gene expression in the MRL/lpr model of lupus nephritis. Kidney Int 50:85–93

    Article  CAS  PubMed  Google Scholar 

  87. Esfandiari E, McInnes IB, Lindop G, Huang FP, Field M, Komai-Koma M, Wei X, Liew FY (2001) A proinflammatory role of IL-18 in the development of spontaneous autoimmune disease. J Immunol 167:5338–5347

    Article  CAS  PubMed  Google Scholar 

  88. Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F, Neumann D, Beermann S, Novick D, Dinarello CA, Boraschi D, Migliorini P (2009) IL-18 activity in systemic lupus erythematosus. Ann N Y Acad Sci 1173:301–309

    Article  CAS  PubMed  Google Scholar 

  89. Yin Z, Bahtiyar G, Zhang N, Liu L, Zhu P, Robert ME, McNiff J, Madaio MP, Craft J (2002) IL-10 regulates murine lupus. J Immunol 169:2148–2155

    Article  CAS  PubMed  Google Scholar 

  90. Sugiyama N, Nakashima H, Yoshimura T, Sadanaga A, Shimizu S, Masutani K, Igawa T, Akahoshi M, Miyake K, Takeda A, Yoshimura A, Hamano S, Yoshida H (2008) Amelioration of human lupus-like phenotypes in MRL/lpr mice by overexpression of interleukin 27 receptor alpha (WSX-1). Ann Rheum Dis 67:1461–1467

    Article  CAS  PubMed  Google Scholar 

  91. Hron JD, Peng SL (2004) Type I IFN protects against murine lupus. J Immunol 173:2134–2142

    Article  CAS  PubMed  Google Scholar 

  92. Schwarting A, Paul K, Tschirner S, Menke J, Hansen T, Brenner W, Kelley VR, Relle M, Galle PR (2005) Interferon-β: a therapeutic for autoimmune lupus in MRL-Faslpr mice. J Am Soc Nephrol 16:3264–3272

    Article  CAS  PubMed  Google Scholar 

  93. Herber D, Brown TP, Liang S, Young DA, Collins M, Dunussi-Joannopoulos K (2007) IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 178:3822–3830

    Article  CAS  PubMed  Google Scholar 

  94. Murphy ED, Roths JB (1979) A Y chromosome associated factor in strain BXSB producing accelerated autoimmunity and lymphoproliferation. Arthritis Rheum 22:1188–1194

    Article  CAS  PubMed  Google Scholar 

  95. Maibaum MA, Haywood ME, Walport MJ, Morley BJ (2000) Lupus susceptibility loci map within regions of BXSB derived from the SB/Le parental strain. Immunogenetics 51:370–372

    Article  CAS  PubMed  Google Scholar 

  96. Hudgins CC, Steinberg RT, Klinman DM, Reeves MJ, Steinberg AD (1985) Studies of consomic mice bearing the Y chromosome of the BXSB mouse. J Immunol 134:3849–3854

    CAS  PubMed  Google Scholar 

  97. Merino R, Shibata T, De Kossodo S, Izui S (1989) Differential effect of the autoimmune Yaa and lpr genes on the acceleration of lupus-like syndrome in MRL/MpJ mice. Eur J Immunol 19:2131–2137

    Article  CAS  PubMed  Google Scholar 

  98. Bolland S, Ravetch JV (2000) Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 13:277–285

    Article  CAS  PubMed  Google Scholar 

  99. Bolland S, Yim YS, Tus K, Wakeland EK, Ravetch JV (2002) Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(-/-) mice. J Exp Med 195:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Izui S, Higaki M, Morrow D, Merino R (1988) The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW x C57BL/6)F1 male mice, but not in C57BL/6 male mice. Eur J Immunol 18:911–915

    Article  CAS  PubMed  Google Scholar 

  101. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    Article  CAS  PubMed  Google Scholar 

  102. Deane JA, Pisitkun P, Barrett RS, Feigenbaum L, Town T, Ward JM, Flavell RA, Bolland S (2007) Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mizutani H, Engelman RW, Kinjoh K, Kurata Y, Ikehara S, Matsuzawa Y, Good RA (1994) Calorie restriction prevents the occlusive coronary vascular disease of autoimmune (NZW x BXSB)F1 mice. Proc Natl Acad Sci U S A 91:4402–4406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mizutani H, Engelman RW, Kurata Y, Ikehara S, Good RA (1994) Energy restriction prevents and reverses immune thrombocytopenic purpura (ITP) and increases life span of ITP-prone (NZW x BXSB) F1 mice. J Nutr 124:2016–2023

    CAS  PubMed  Google Scholar 

  105. Liu K, Mohan C (2006) What do mouse models teach us about human SLE? Clin Immunol 119:123–130

    Article  CAS  PubMed  Google Scholar 

  106. Gu Z, Akiyama K, Ma X, Zhang H, Feng X, Yao G, Hou Y, Lu L, Gilkeson GS, Silver RM, Zeng X, Shi S, Sun L (2010) Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus 19:1502–1514

    Article  CAS  PubMed  Google Scholar 

  107. Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F (2012) Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice. Cell Physiol Biochem 29:705–712

    Article  CAS  PubMed  Google Scholar 

  108. Choi EW, Shin IS, Song JW, Yun TW, Yang J, Choi KS, Seong JK (2015) Transplantation of adipose tissue-derived mesenchymal stem cells prevents the development of lupus dermatitis. Stem Cells Dev 24:2041–2051

    Article  CAS  PubMed  Google Scholar 

  109. Liu RH, Li YQ, Zhou WJ, Shi YJ, Ni L, Liu GX (2014) Supplementing mesenchymal stem cells improves the therapeutic effect of hematopoietic stem cell transplantation in the treatment of murine systemic lupus erythematosus. Transplant Proc 46:1621–1627

    Article  CAS  PubMed  Google Scholar 

  110. Youd M, Blickarz C, Woodworth L, Touzjian T, Edling A, Tedstone J, Ruzek M, Tubo R, Kaplan J, Lodie T (2010) Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clin Exp Immunol 161:176–186

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Vl B, Wei M, Andreeff M, Marini FC (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27:2614–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Passweg J, Tyndall A (2007) Autologous stem cell transplantation in autoimmune diseases. Semin Hematol 44:278–285

    Article  PubMed  Google Scholar 

  113. Jang E, Jeong M, Kim S, Jang K, Kang BK, Lee DY, Bae SC, Kim KS, Youn J (2015) Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T cell development. Cell Transplant. doi:10.3727/096368915X688173

    Google Scholar 

  114. Gu F, Molano I, Ruiz P, Sun L, Gilkeson GS (2012) Differential effect of allogeneic versus syngeneic mesenchymal stem cell transplantation in MRL/lpr and (NZB/NZW)F1 mice. Clin Immunol 145:142–152

    Article  CAS  PubMed  Google Scholar 

  115. Choi YH, Kurtz A, Stamm C (2011) Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther 22:3–17

    Article  CAS  PubMed  Google Scholar 

  116. Li Y, Raman I, Du Y, Yan M, Min S, Yang J, Fang X, Li W, Lu J, Zhou XJ, Mohan C, Li QZ (2013) Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress. PLoS One 8:e67790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lu S, Zeumer L, Sorensen H, Yang H, Ng Y, Yu F, Riva A, Croker B, Wallet S, Morel L (2015) The murine Pbx1-d lupus susceptibility allele accelerates mesenchymal stem cell differentiation and impairs their immunosuppressive function. J Immunol 194:43–55

    Article  CAS  PubMed  Google Scholar 

  118. Che N, Li X, Zhang L, Liu R, Chen H, Gao X, Shi S, Chen W, Sun L (2014) Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. J Immunol 193:5306–5314

    Article  CAS  PubMed  Google Scholar 

  119. Schena F, Gambini C, Gregorio A, Mosconi M, Reverberi D, Gattorno M, Casazza S, Uccelli A, Moretta L, Martini A, Traggiai E (2010) Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum 62:2776–2786

    Article  CAS  PubMed  Google Scholar 

  120. Chang JW, Hung SP, Wu HH, Wu WM, Yang AH, Tsai HL, Yang Y, Lee OK (2011) Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell Transplant 20:245–257

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulya Bukulmez M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bukulmez, H. (2016). Mesenchymal Stem Cell Treatment in Mice Models of Systemic Lupus Erythematosus. In: Malemud, C., Alsberg, E. (eds) Mesenchymal Stem Cells and Immunomodulation. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-46733-7_3

Download citation

Publish with us

Policies and ethics