Skip to main content

Genetic Mechanisms of Transfer of Drug Resistance

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

The mobile elements responsible for capture and mobilization of resistance genes include composite transposons, characterized by insertion sequences on either side of a single gene or a small number of genes. Early examples were Tn5, Tn9, and Tn10, coding resistance to kanamycin + streptomycin, chloramphenicol, and tetracycline, respectively. Possibly any chromosomal resistance gene can become part of a composite transposon by receiving an insertion sequence on both sides. Simple or unit transposons, with only short repeats flanking the transposition genes, have also been efficient vehicles for resistance gene dissemination. Examples are Tn3 and relatives carrying a wide variety of extended-spectrum TEM-β-lactamases, and Tn1546 with its entire vancomycin resistance operon. Conjugative transposons are also important vectors of vancomycin resistance.

Integrons are natural expression vectors into which resistance genes, packaged as small mobile “gene cassettes,” are inserted in tandem arrays downstream of a promoter to form resistance operons. A wide variety of cassette-borne resistance genes has been identified, most recently those encoding carbapenemases.

Novel classes of antibiotics directed at new targets are needed. Although resistance will eventually emerge, the process should be slower than for new antibiotics of existing classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963;27:87–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamczyk M, Jagura-Burdzy G. Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol. 2003;50(2):425–53.

    CAS  PubMed  Google Scholar 

  3. Grohmann E, Muth G, Espinosa M. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev. 2003;67(2):277–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pansegrau W, Lanka E, Barth PT, et al. Complete nucleotide sequence of Birmingham IncPα plasmids. Compilation and comparative analysis. J Mol Biol. 1994;239(5):623–63.

    Article  CAS  PubMed  Google Scholar 

  5. Pinkney M, Diaz R, Lanka E, Thomas CM. Replication of mini RK2 plasmid in extracts of Escherichia coli requires plasmid-encoded protein TrfA and host-encoded proteins DnaA, B, G DNA gyrase and DNA polymerase III. J Mol Biol. 1988;203(4):927–38.

    Article  CAS  PubMed  Google Scholar 

  6. Smith CA, Shingler V, Thomas CM. The trfA and trfB promoter regions of broad host range plasmid RK2 share common potential regulatory sequences. Nucleic Acids Res. 1984;12(8):3619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jensen RB, Gerdes K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol. 1995;17(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  8. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74(3):434–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35(5):820–55.

    Article  CAS  PubMed  Google Scholar 

  10. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev. 1999;63(3):507–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Quinn T, O'Mahony R, Baird AW, Drudy D, Whyte P, Fanning S. Multi-drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters. Curr Drug Targets. 2006;7(7):849–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hall RM. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol. 2010;5:1525–38.

    Article  CAS  PubMed  Google Scholar 

  13. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A. The genetics of Salmonella genomic island 1. Microbes Infect. 2006;8(7):1915–22.

    Article  CAS  PubMed  Google Scholar 

  14. Ahmed AM, Hussein AI, Shimamoto T. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. J Antimicrob Chemother. 2007;59(2):184–90.

    Article  CAS  PubMed  Google Scholar 

  15. Siebor E, Neuwirth C. Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France. J Antimicrob Chemother. 2013;68(8):1750–6.

    Article  CAS  PubMed  Google Scholar 

  16. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol. 2005;55(6):1911–24.

    Article  CAS  PubMed  Google Scholar 

  17. Hamidian M, Holt KE, Hall RM. The complete sequence of Salmonella genomic island SGI1-K. J Antimicrob Chemother. 2015;70(1):305–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hamidian M, Holt KE, Hall RM. The complete sequence of Salmonella genomic island SGI2. J Antimicrob Chemother. 2015; 70(2):617–9.

    Google Scholar 

  19. Perez F, Hujer AM, Marshall SH, et al. Extensively drug-resistant Pseudomonas aeruginosa isolates containing bla VIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in Northeast Ohio. Antimicrob Agents Chemother. 2014;58(10):5929–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1), e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Post V, Hall RM. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53(6):2667–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adams MD, Chan ER, Molyneaux ND, Bonomo RA. Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(9):3569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose A. TnAbaR1: a novel Tn7-related transposon in Acinetobacter baumannii that contributes to the accumulation and dissemination of large repertoires of resistance genes. Biosci Horizons. 2010;3(1):40–8.

    Article  CAS  Google Scholar 

  24. Post V, White PA, Hall RM. Evolution of AbaR-type genomic resistance islands in multiply antibiotic-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2010;65(6):1162–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez MS, Vilacoba E, Stietz MS, et al. Spreading of AbaR-type genomic islands in multidrug resistance Acinetobacter baumannii strains belonging to different clonal complexes. Curr Microbiol. 2013;67(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  26. Hamidian M, Hall RM. AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother. 2011;66(11):2484–91.

    Article  CAS  PubMed  Google Scholar 

  27. Nigro SJ, Farrugia DN, Paulsen IT, Hall RM. A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. J Antimicrob Chemother. 2013;68(3):554–7.

    Article  CAS  PubMed  Google Scholar 

  28. Mathee K, Narasimhan G, Valdes C, et al. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A. 2008;105(8):3100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tummler B. Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol. 2011;2:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roy PH, Tetu SG, Larouche A, et al. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE. 2010;5(1), e8842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kos VN, Deraspe M, McLaughlin RE, et al. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother; 2014;59(1):427–36.

    Google Scholar 

  32. Haniford DB. Transposon Tn10. In: Craig NL et al., editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 457–83.

    Chapter  Google Scholar 

  33. Reznikoff WS. Tn5 transposition. In: Craig NL et al., editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 403–22.

    Chapter  Google Scholar 

  34. Shapiro JA. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A. 1979;76(4):1933–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kennedy AK, Guhathakurta A, Kleckner N, Haniford DB. Tn10 transposition via a DNA hairpin intermediate. Cell. 1998;95(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  36. Davies DR, Goryshin IY, Reznikoff WS, Rayment I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science. 2000;289(5476):77–85.

    Article  CAS  PubMed  Google Scholar 

  37. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother. 2012;56(1):559–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother. 2007;51(4):1530–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of bla NDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56(2):1087–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Partridge SR, Iredell JR. Genetic contexts of bla NDM-1. Antimicrob Agents Chemother. 2012;56(11):6065–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Byrne ME, Rouch DA, Skurray RA. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene. 1989;81(2):361–7.

    Article  CAS  PubMed  Google Scholar 

  42. Quintiliani Jr R, Courvalin P. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene. 1996;172(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  43. Poirel L, Decousser JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla CTX-M β-lactamase gene. Antimicrob Agents Chemother. 2003;47(9):2938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6–7):305–17.

    Article  PubMed  CAS  Google Scholar 

  45. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. MBio. 2014;5(5):e01801–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allmansberger R, Brau B, Piepersberg W. Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet. 1985;198(3):514–20.

    Article  CAS  PubMed  Google Scholar 

  48. Poirel L, Bonnin RA, Nordmann P. Analysis of the resistome of a multidrug-resistant NDM-1-producing Escherichia coli strain by high-throughput genome sequencing. Antimicrob Agents Chemother. 2011;55(9):4224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goussard S, Sougakoff W, Mabilat C, Bauernfeind A, Courvalin P. An IS1-like element is responsible for high-level synthesis of extended-spectrum β-lactamase TEM-6 in Enterobacteriaceae. J Gen Microbiol. 1991;137(12):2681–7.

    Article  CAS  PubMed  Google Scholar 

  50. Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  51. Heritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clin Microbiol Infect. 2006;12(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  52. Grindley NDF. The movement of Tn3-like elements: transposition and cointegrate resolution. In: Craig NL et al., editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 272–302.

    Chapter  Google Scholar 

  53. Stark WM, Boocock MR, Sherratt DJ. Site-specific recombination by Tn3 resolvase. Trends Genet. 1989;5(9):304–9.

    Article  CAS  PubMed  Google Scholar 

  54. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol. 2012;12(5):883–93.

    Article  CAS  PubMed  Google Scholar 

  56. Brunton JL, Maclean I, Ronald AR, Albritton WL. Plasmid-mediated ampicillin resistance in Haemophilus ducreyi. Antimicrob Agents Chemother. 1979;15(2):294–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elwell LP, Roberts M, Mayer LW, Falkow S. Plasmid-mediated β-lactamase production in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1977;11(3):528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Arthur M, Molinas C, Courvalin P. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1992;174(8):2582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wright GD, Holman TR, Walsh CT. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry. 1993;32(19):5057–63.

    Article  CAS  PubMed  Google Scholar 

  60. Arthur M, Molinas C, Depardieu F, Courvalin P. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993;175(1):117–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Flannagan SE, Chow JW, Donabedian SM, et al. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob Agents Chemother. 2003;47(12):3954–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Craig NL. Tn7. In: N.L. Craig, et al. eds. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 423–56.

    Google Scholar 

  63. Kholodii GY, Mindlin SZ, Bass IA, Yurieva OV, Minakhina SV, Nikiforov VG. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol. 1995;17(6):1189–200.

    Article  CAS  PubMed  Google Scholar 

  64. Naas T, Cuzon G, Truong HV, Nordmann P. Role of ISKpn7 and deletions in bla KPC gene expression. Antimicrob Agents Chemother. 2012;56(9):4753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Delihas N. Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol. 2008;67(3):475–81.

    Article  CAS  PubMed  Google Scholar 

  66. Zong Z. The complex genetic context of bla PER-1 flanked by miniature inverted-repeat transposable elements in Acinetobacter johnsonii. PLoS ONE. 2014;9(2), e90046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Szuplewska M, Ludwiczak M, Lyzwa K, Czarnecki J, Bartosik D. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs). PLoS ONE. 2014;9(8), e105010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Poirel L, Carrer A, Pitout JD, Nordmann P. Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antimicrob Agents Chemother. 2009;53(6):2492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Churchward G. Conjugative transposons and related mobile elements. In: Craig NL et al., editors. Mobile DNA II. Washington, DC: ASM Press; 2002. p. 177–91.

    Chapter  Google Scholar 

  70. Franke AE, Clewell DB. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol. 1981;145(1):494–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995;3(6):229–36.

    Article  CAS  PubMed  Google Scholar 

  72. Courvalin P, Carlier C. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet. 1986;205(2):291–7.

    Article  CAS  PubMed  Google Scholar 

  73. Carias LL, Rudin SD, Donskey CJ, Rice LB. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol. 1998;180(17):4426–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology. 2000;146(Pt 6):1481–9.

    Article  CAS  PubMed  Google Scholar 

  75. Sebaihia M, Wren BW, Mullany P, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet. 2006;38(7):779–86.

    Article  PubMed  CAS  Google Scholar 

  76. Wozniak RA, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8(8):552–63.

    Article  CAS  PubMed  Google Scholar 

  77. Caparon MG, Scott JR. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell. 1989;59(6):1027–34.

    Article  CAS  PubMed  Google Scholar 

  78. Whittle G, Shoemaker NB, Salyers AA. Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT. J Bacteriol. 2002;184(14):3839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shoemaker NB, Wang GR, Stevens AM, Salyers AA. Excision, transfer, and integration of NBU1, a mobilizable site-selective insertion element. J Bacteriol. 1993;175(20):6578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology. 2001;147(Pt 10):2717–28.

    Article  CAS  PubMed  Google Scholar 

  81. Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother. 2001;45(11):2991–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hall RM, Stokes HW. Integrons: novel DNA elements which capture genes by site-specific recombination. Genetica. 1993;90(2–3):115–32.

    Article  CAS  PubMed  Google Scholar 

  83. Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 1995;15(4):593–600.

    Article  CAS  PubMed  Google Scholar 

  84. Hall RM, Vockler C. The region of the IncN plasmid R46 coding for resistance to β-lactam antibiotics, streptomycin/spectinomycin and sulphonamides is closely related to antibiotic resistance segments found in IncW plasmids and in Tn21-like transposons. Nucleic Acids Res. 1987;15(18):7491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Levesque C, Brassard S, Lapointe J, Roy PH. Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons. Gene. 1994;142(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  86. Collis CM, Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother. 1995;39(1):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 β-lactamase gene. Proc Natl Acad Sci U S A. 1987;84(21):7378–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Radstrom P, Skold O, Swedberg G, Flensburg J, Roy PH, Sundstrom L. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol. 1994;176(11):3257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Petrovski S, Stanisich VA. Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol. 2010;192(7):1865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brown HJ, Stokes HW, Hall RM. The integrons In0, In2, and In5 are defective transposon derivatives. J Bacteriol. 1996;178(15):4429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009;33(4):757–84.

    Article  CAS  PubMed  Google Scholar 

  92. Bissonnette L, Champetier S, Buisson JP, Roy PH. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol. 1991;173(14):4493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stokes HW, Hall RM. Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn1696 integron suggests regulation by translational attenuation. Plasmid. 1991;26(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  94. Parent R, Roy PH. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat. J Bacteriol. 1992;174(9):2891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Allignet J, Loncle V, Simenel C, Delepierre M, el Solh N. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. Gene. 1993;130(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  96. Rende-Fournier R, Leclercq R, Galimand M, Duval J, Courvalin P. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Antimicrob Agents Chemother. 1993;37(10):2119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tennigkeit J, Matzura H. Nucleotide sequence analysis of a chloramphenicol-resistance determinant from Agrobacterium tumefaciens and identification of its gene product. Gene. 1991;98(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  98. Cameron FH, Groot Obbink DJ, Ackerman VP, Hall RM. Nucleotide sequence of the AAD(2″) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucleic Acids Res. 1986;14(21):8625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wohlleben W, Arnold W, Bissonnette L, et al. On the evolution of Tn21-like multiresistance transposons: sequence analysis of the gene (aacC1) for gentamicin acetyltransferase-3-I(AAC(3)-I), another member of the Tn21-based expression cassette. Mol Gen Genet. 1989;217(2–3):202–8.

    Article  CAS  PubMed  Google Scholar 

  100. Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ. Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6′-N-acetyltransferase Ib and IIa proteins. J Bacteriol. 1992;174(10):3196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  102. Bunny KL, Hall RM, Stokes HW. New mobile gene cassettes containing an aminoglycoside resistance gene, aacA7, and a chloramphenicol resistance gene, catB3, in an integron in pBWH301. Antimicrob Agents Chemother. 1995;39(3):686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-β-lactamase gene bla IMP. Antimicrob Agents Chemother. 1995;39(7):1612–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jové T, Da Re S, Denis F, Mazel D, Ploy MC. Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet. 2010;6(1), e1000793.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mazel D, Dychinco B, Webb VA, Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science. 1998;280(5363):605–8.

    Article  CAS  PubMed  Google Scholar 

  107. Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 2003;13(3):428–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Drouin F, Melancon J, Roy PH. The IntI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. J Bacteriol. 2002;184(6):1811–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Leon G, Roy PH. Excision and integration of cassettes by an integron integrase of Nitrosomonas europaea. J Bacteriol. 2003;185(6):2036–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Biskri L, Bouvier M, Guerout AM, Boisnard S, Mazel D. Comparative study of class 1 integron and Vibrio cholerae superintegron integrase activities. J Bacteriol. 2005;187(5):1740–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Toor N, Robart AR, Christianson J, Zimmerly S. Self-splicing of a group IIC intron: 5′ exon recognition and alternative 5′ splicing events implicate the stem-loop motif of a transcriptional terminator. Nucleic Acids Res. 2006;34(22):6461–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Centron D, Roy PH. Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother. 2002;46(5):1402–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Léon G, Roy PH. Potential role of group IIC-attC introns in integron cassette formation. J Bacteriol. 2009;191(19):6040–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Stokes HW, Tomaras C, Parsons Y, Hall RM. The partial 3′-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin. Plasmid. 1993;30(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  115. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Arduino SM, Roy PH, Jacoby GA, Orman BE, Pineiro SA, Centron D. bla CTX-M-2 is located in an unusual class 1 integron (In35) which includes Orf513. Antimicrob Agents Chemother. 2002;46(7):2303–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gaillot O, Clement C, Simonet M, Philippon A. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J Antimicrob Chemother. 1997;39(1):85–7.

    Article  CAS  PubMed  Google Scholar 

  118. Doi Y, Shibata N, Shibayama K, et al. Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2002;46(8):2427–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother. 2003;47(7):2242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Galimand M, Sabtcheva S, Courvalin P, Lambert T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother. 2005;49(7):2949–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wozniak RA, Fouts DE, Spagnoletti M, et al. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet. 2009;5(12), e1000786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49(8):3523–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bozdogan B, Leclercq R. Effects of genes encoding resistance to streptogramins A and B on the activity of quinupristin-dalfopristin against Enterococcus faecium. Antimicrob Agents Chemother. 1999;43(11):2720–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Roy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roy, P.H., Partridge, S.R. (2017). Genetic Mechanisms of Transfer of Drug Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_5

Download citation

Publish with us

Policies and ethics