Skip to main content

Drug Resistance in Leishmania

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Leishmaniasis is a protozoan parasitic disease that affects 12 million people worldwide. Pentavalent antimonials are currently the first line of defense for the treatment of both visceral (VL) and cutaneous leishmaniasis (CL). However, clinical resistance to this class of drug is a major impediment to treatment. Amphotericin B, pentamidine, and miltefosine offer significant promise in the treatment of VL and CL, including antimony-resistant cases. Several other drugs, for example, allopurinol, atovaquone, fluconazole, paromomycin, and sitamaquine, are in various stages of clinical trials. Application of many of these drugs has resulted in the development of either clinical- or laboratory-induced drug resistance. Understanding the mechanisms of resistance is important for the development of newer generation of drugs to provide better treatment of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi CM, Lerner EA. Leishmaniasis: recognition and management with a focus on the immunocompromised patient. Am J Clin Dermatol. 2002;3(2):91–105.

    Article  PubMed  Google Scholar 

  2. Silva ES, et al. Visceral leishmaniasis caused by Leishmania (Viannia) braziliensis in a patient infected with human immunodeficiency virus. Rev Inst Med Trop Sao Paulo. 2002;44(3):145–9.

    Article  PubMed  Google Scholar 

  3. Monge-Maillo B, et al. Visceral leishmaniasis and HIV coinfection in the Mediterranean region. PLoS Negl Trop Dis. 2014;8(8):e3021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Faraut-Gambarelli F, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother. 1997;41(4):827–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jackson JE, et al. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania spp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg. 1990;43(5):464–80.

    Article  CAS  PubMed  Google Scholar 

  6. Ashutosh, Sundar S, Goyal N. Molecular mechanisms of antimony resistance in Leishmania. J Med Microbiol. 2007;56(Pt 2):143–53.

    Google Scholar 

  7. Sundar S, et al. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31(4):1104–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ouellette M, et al. Amplification of ABC transporter gene pgpA and of other heavy metal resistance genes in Leishmania tarentolae and their study by gene transfection and gene disruption. Methods Enzymol. 1998;292:182–93.

    Article  CAS  PubMed  Google Scholar 

  9. Urbina JA. Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitology. 1997;114(Suppl):S91–9.

    PubMed  Google Scholar 

  10. Sundar S, et al. Oral miltefosine for Indian visceral leishmaniasis. N Engl J Med. 2002;347(22):1739–46.

    Article  CAS  PubMed  Google Scholar 

  11. Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–60.

    Article  CAS  PubMed  Google Scholar 

  12. Herwaldt BL. Leishmaniasis. Lancet. 1999;354(9185):1191–9.

    Article  CAS  PubMed  Google Scholar 

  13. Goodwin LG. Pentostam (sodium stibogluconate); a 50-year personal reminiscence. Trans R Soc Trop Med Hyg. 1995;89(3):339–41.

    Article  CAS  PubMed  Google Scholar 

  14. Lugo de Yarbuh A, et al. Antimony determination in tissues and serum of hamsters infected with Leishmania garnhami and treated with meglumine antimoniate. Ann Trop Med Parasitol. 1994;88(1):37–41.

    Article  CAS  PubMed  Google Scholar 

  15. Mottram JC, Coombs GH. Leishmania mexicana: enzyme activities of amastigotes and promastigotes and their inhibition by antimonials and arsenicals. Exp Parasitol. 1985;59(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  16. Roberts WL, Berman JD, Rainey PM. In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob Agents Chemother. 1995;39(6):1234–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sereno D, Lemesre JL. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob Agents Chemother. 1997;41(5):972–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sereno D, et al. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother. 1998;42(12):3097–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mukhopadhyay R, Shi J, Rosen BP. Purification and characterization of Acr2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem. 2000;275(28):21149–57.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, et al. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004;279(36):37445–51.

    Article  CAS  PubMed  Google Scholar 

  21. Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J. 2004;381(Pt 2):405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Langreth SG, et al. Fine-structural alterations in Leishmania tropica within human macrophages exposed to antileishmanial drugs in vitro. J Protozool. 1983;30(3):555–61.

    Article  CAS  PubMed  Google Scholar 

  23. Berman JD, Waddell D, Hanson BD. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrob Agents Chemother. 1985;27(6):916–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chakraborty AK, Majumder HK. Mode of action of pentavalent antimonials: specific inhibition of type I DNA topoisomerase of Leishmania donovani. Biochem Biophys Res Commun. 1988;152(2):605–11.

    Article  CAS  PubMed  Google Scholar 

  25. Demicheli C, et al. Antimony(V) complex formation with adenine nucleosides in aqueous solution. Biochim Biophys Acta. 2002;1570(3):192–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mehta A, Shaha C. Mechanism of metalloid-induced death in Leishmania spp. role of iron, reactive oxygen species, Ca2+, and glutathione. Free Radic Biol Med. 2006;40(10):1857–68.

    Google Scholar 

  27. Mookerjee Basu J, et al. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother. 2006;50(5):1788–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004;279(38):39925–32.

    Article  CAS  PubMed  Google Scholar 

  29. Ritmeijer K, et al. Ethiopian visceral leishmaniasis: generic and proprietary sodium stibogluconate are equivalent; HIV co-infected patients have a poor outcome. Trans R Soc Trop Med Hyg. 2001;95(6):668–72.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandez-Guerrero ML, et al. Visceral leishmaniasis in immunocompromised hosts. Am J Med. 1987;83(6):1098–102.

    Article  CAS  PubMed  Google Scholar 

  31. Murray HW, et al. Requirement for T cells and effect of lymphokines in successful chemotherapy for an intracellular infection. Experimental visceral leishmaniasis. J Clin Invest. 1989;83(4):1253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Escobar P, Yardley V, Croft SL. Activities of hexadecylphosphocholine (miltefosine), Am Bisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrob Agents Chemother. 2001;45(6):1872–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Murray HW, et al. Role and effect of IL-2 in experimental visceral leishmaniasis. J Immunol. 1993;151(2):929–38.

    CAS  PubMed  Google Scholar 

  34. Alexander J, et al. Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol. 2000;30(10):2935–43.

    Article  CAS  PubMed  Google Scholar 

  35. Murray HW, et al. Interleukin-12 regulates the response to chemotherapy in experimental visceral leishmaniasis. J Infect Dis. 2000;182(5):1497–502.

    Article  CAS  PubMed  Google Scholar 

  36. Sanders OI, et al. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J Bacteriol. 1997;179(10):3365–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wysocki R, et al. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol. 2001;40(6):1391–401.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A. 2002;99(9):6053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gourbal B, et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem. 2004;279(30):31010–7.

    Article  CAS  PubMed  Google Scholar 

  40. Agre P, et al. Aquaporin water channels--from atomic structure to clinical medicine. J Physiol. 2002;542(Pt 1):3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uzcategui NL, et al. Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Mol Microbiol. 2008;70(6):1477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mukhopadhyay R, et al. The role of alanine 163 in solute permeability of Leishmania major aquaglyceroporin LmAQP1. Mol Biochem Parasitol. 2011;175(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  43. Marquis N, et al. Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol. 2005;57(6):1690–9.

    Article  CAS  PubMed  Google Scholar 

  44. Mandal S, et al. Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. J Antimicrob Chemother. 2010;65(3):496–507.

    Article  CAS  PubMed  Google Scholar 

  45. Maharjan M, et al. Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am J Trop Med Hyg. 2008;79(1):69–75.

    CAS  PubMed  Google Scholar 

  46. Decuypere S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49(11):4616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandal G, et al. Modulation of Leishmania major aquaglyceroporin activity by a mitogen-activated protein kinase. Mol Microbiol. 2012;85(6):1204–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shaked-Mishan P, et al. Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem. 2001;276(6):3971–6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Y, Bhattacharjee H, Mukhopadhyay R. Bifunctional role of the leishmanial antimonate reductase LmACR2 as a protein tyrosine phosphatase. Mol Biochem Parasitol. 2006;148(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  50. Jeddi F, Piarroux R, Mary C. Antimony resistance in Leishmania, focusing on experimental research. J Trop Med. 2011:695382.

    Google Scholar 

  51. Ouellette M, et al. ABC transporters in Leishmania and their role in drug resistance. Drug Resist Updat. 1998;1:43–8.

    Article  CAS  PubMed  Google Scholar 

  52. Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113.

    Article  CAS  PubMed  Google Scholar 

  53. Detke S, Katakura K, Chang KP. DNA amplification in arsenite-resistant Leishmania. Exp Cell Res. 1989;180(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  54. Ouellette M, et al. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania. EMBO J. 1991;10(4):1009–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Grondin K, Papadopoulou B, Ouellette M. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania. Nucleic Acids Res. 1993;21(8):1895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ferreira-Pinto KC, et al. Leishmania (V.) guyanensis: isolation and characterization of glucantime-resistant cell lines. Can J Microbiol. 1996;42(9):944–9.

    Article  CAS  PubMed  Google Scholar 

  57. Legare D, et al. Efflux systems and increased trypanothione levels in arsenite-resistant Leishmania. Exp Parasitol. 1997;87(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  58. Haimeur A, et al. Amplification of the ABC transporter gene PGPA and increased trypanothione levels in potassium antimonyl tartrate (SbIII) resistant Leishmania tarentolae. Mol Biochem Parasitol. 2000;108(1):131–5.

    Article  CAS  PubMed  Google Scholar 

  59. Callahan HL, Beverley SM. Heavy metal resistance: a new role for P-glycoproteins in Leishmania. J Biol Chem. 1991;266(28):18427–30.

    CAS  PubMed  Google Scholar 

  60. Papadopoulou B, et al. Gene disruption of the P-glycoprotein related gene pgpa of Leishmania tarentolae. Biochem Biophys Res Commun. 1996;224(3):772–8.

    Article  CAS  PubMed  Google Scholar 

  61. Papadopoulou B, et al. Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J Biol Chem. 1994;269(16):11980–6.

    CAS  PubMed  Google Scholar 

  62. Mukhopadhyay R, et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci U S A. 1996;93(19):10383–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grondin K, et al. Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 1997;16(11):3057–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Haimeur A, et al. Elevated levels of polyamines and trypanothione resulting from overexpression of the ornithine decarboxylase gene in arsenite-resistant Leishmania. Mol Microbiol. 1999;34(4):726–35.

    Article  CAS  PubMed  Google Scholar 

  65. Legare D, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276(28):26301–7.

    Article  CAS  PubMed  Google Scholar 

  66. Dey S, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994;67(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  67. Dey S, et al. An ATP-dependent As(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci U S A. 1996;93(5):2192–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Callahan HL, et al. The PGPA gene of Leishmania major mediates antimony (SbIII) resistance by decreasing influx and not by increasing efflux. Mol Biochem Parasitol. 1994;68(1):145–9.

    Article  CAS  PubMed  Google Scholar 

  69. Leprohon P, Legare D, Ouellette M. Intracellular localization of the ABCC proteins of Leishmania and their role in resistance to antimonials. Antimicrob Agents Chemother. 2009;53(6):2646–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manzano JI, et al. A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother. 2013;57(8):3719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kumar D, et al. Biomarkers of antimony resistance: need for expression analysis of multiple genes to distinguish resistance phenotype in clinical isolates of Leishmania donovani. Parasitol Res. 2012;111(1):223–30.

    Article  PubMed  Google Scholar 

  72. Mittal MK, et al. Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg. 2007;76(4):681–8.

    CAS  PubMed  Google Scholar 

  73. Adaui V, et al. Comparison of gene expression patterns among Leishmania braziliensis clinical isolates showing a different in vitro susceptibility to pentavalent antimony. Parasitology. 2011;138(2):183–93.

    Article  CAS  PubMed  Google Scholar 

  74. Mandal G, et al. Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology. 2007;134(Pt 12):1679–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mandal G, et al. Functionality of drug efflux pumps in antimonial resistant Leishmania donovani field isolates. Indian J Biochem Biophys. 2009;46(1):86–92.

    CAS  PubMed  Google Scholar 

  76. Wyllie S, et al. Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol. 2010;173(2):162–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brochu C, et al. Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother. 2003;47(10):3073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Genest PA, et al. A protein of the leucine-rich repeats (LRRs) superfamily is implicated in antimony resistance in Leishmania infantum amastigotes. Mol Biochem Parasitol. 2008;158(1):95–9.

    Article  CAS  PubMed  Google Scholar 

  79. Mukherjee B, et al. Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A. 2013;110(7):E575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mukhopadhyay R, et al. Characterisation of antimony-resistant Leishmania donovani isolates: biochemical and biophysical studies and interaction with host cells. Int J Parasitol. 2011;41(13–14):1311–21.

    Article  CAS  PubMed  Google Scholar 

  81. Tandon R, et al. Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob Agents Chemother. 2014;58(6):2997–3007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Perry MR, et al. Chronic exposure to arsenic in drinking water can lead to resistance to antimonial drugs in a mouse model of visceral leishmaniasis. Proc Natl Acad Sci U S A. 2013;110(49):19932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ashutosh, et al. Downregulation of mitogen-activated protein kinase 1 of Leishmania donovani field isolates is associated with antimony resistance. Antimicrob Agents Chemother. 2012;56(1):518–25.

    Google Scholar 

  84. Bhandari V, et al. Increased parasite surface antigen-2 expression in clinical isolates of Leishmania donovani augments antimony resistance. Biochem Biophys Res Commun. 2013;440(4):646–51.

    Article  CAS  PubMed  Google Scholar 

  85. Schafer C, et al. Reduced antimony accumulation in ARM58-overexpressing Leishmania infantum. Antimicrob Agents Chemother. 2014;58(3):1565–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rosenthal E, Marty P. Recent understanding in the treatment of visceral leishmaniasis. J Postgrad Med. 2003;49(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  87. Davidson RN, et al. Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet. 1991;337(8749):1061–2.

    Article  CAS  PubMed  Google Scholar 

  88. Saha AK, Mukherjee T, Bhaduri A. Mechanism of action of amphotericin B on Leishmania donovani promastigotes. Mol Biochem Parasitol. 1986;19(3):195–200.

    Article  CAS  PubMed  Google Scholar 

  89. Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19(1):111–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cuna WR, et al. Enhancement of a TH1 immune response in amphotericin B-treated mucocutaneous leishmaniasis. J Biomed Biotechnol. 2007;2007(5):96410.

    PubMed  PubMed Central  Google Scholar 

  91. Paila YD, Saha B, Chattopadhyay A. Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochem Biophys Res Commun. 2010;399(3):429–33.

    Article  CAS  PubMed  Google Scholar 

  92. Sundar S, Chatterjee M. Visceral leishmaniasis - current therapeutic modalities. Indian J Med Res. 2006;123(3):345–52.

    CAS  PubMed  Google Scholar 

  93. Chappuis F, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5(11):873–82.

    Article  CAS  PubMed  Google Scholar 

  94. Sundar S, Chakravarty J. Liposomal amphotericin B and leishmaniasis: dose and response. J Glob Infect Dis. 2010;2(2):159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  95. de Carvalho RF, et al. Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol. 2013;135(2):217–22.

    Article  PubMed  CAS  Google Scholar 

  96. Ruiz HK, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm. 2014;473(1–2):148–57.

    Article  CAS  PubMed  Google Scholar 

  97. Mbongo N, et al. Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 1998;42(2):352–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Singh AK, Papadopoulou B, Ouellette M. Gene amplification in amphotericin B-resistant Leishmania tarentolae. Exp Parasitol. 2001;99(3):141–7.

    Article  CAS  PubMed  Google Scholar 

  99. Equbal A, et al. Stage-dependent expression and up-regulation of trypanothione synthetase in amphotericin B resistant Leishmania donovani. PLoS One. 2014;9(6):e97600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Mishra M, et al. Amphotericin versus pentamidine in antimony-unresponsive kala-azar. Lancet. 1992;340(8830):1256–7.

    Article  CAS  PubMed  Google Scholar 

  101. Das VN, et al. A randomized clinical trial of low dosage combination of pentamidine and allopurinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. J Assoc Physicians India. 2001;49:609–13.

    CAS  PubMed  Google Scholar 

  102. Masmoudi A, et al. Old World cutaneous leishmaniasis: diagnosis and treatment. J Dermatol Case Rep. 2013;7(2):31–41.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Basselin M, Lawrence F, Robert-Gero M. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes. Biochem J. 1996;315(Pt 2):631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kandpal M, et al. Correlation between inhibition of growth and arginine transport of Leishmania donovani promastigotes in vitro by diamidines. Life Sci. 1996;59(7):PL75–80.

    Article  CAS  PubMed  Google Scholar 

  105. Kandpal M, Tekwani BL. Polyamine transport systems of Leishmania donovani promastigotes. Life Sci. 1997;60(20):1793–801.

    Article  CAS  PubMed  Google Scholar 

  106. Reguera R, et al. Putrescine uptake inhibition by aromatic diamidines in Leishmania infantum promastigotes. Biochem Pharmacol. 1994;47(10):1859–66.

    Article  CAS  PubMed  Google Scholar 

  107. Basselin M, Coombs GH, Barrett MP. Putrescine and spermidine transport in Leishmania. Mol Biochem Parasitol. 2000;109(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  108. Basselin M, et al. Effects of pentamidine on polyamine level and biosynthesis in wild-type, pentamidine-treated, and pentamidine-resistant Leishmania. Exp Parasitol. 1997;85(3):274–82.

    Article  CAS  PubMed  Google Scholar 

  109. Basselin M, et al. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother. 2002;46(12):3731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hentzer B, Kobayasi T. The ultrastructural changes of Leishmania tropica after treatment with pentamidine. Ann Trop Med Parasitol. 1977;71(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  111. Vercesi AE, Docampo R. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochem J. 1992;284(Pt 2):463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong IL, et al. Quinacrine and a novel apigenin dimer can synergistically increase the pentamidine susceptibility of the protozoan parasite Leishmania. J Antimicrob Chemother. 2009;63(6):1179–90.

    Article  CAS  PubMed  Google Scholar 

  113. Coelho AC, Beverley SM, Cotrim PC. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol. 2003;130(2):83–90.

    Article  CAS  PubMed  Google Scholar 

  114. Croft SL, et al. The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol. 1987;36(16):2633–6.

    Article  CAS  PubMed  Google Scholar 

  115. Kuhlencord A, et al. Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother. 1992;36(8):1630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jha TK, et al. Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med. 1999;341(24):1795–800.

    Article  CAS  PubMed  Google Scholar 

  117. Sundar S, et al. Oral miltefosine treatment in children with mild to moderate Indian visceral leishmaniasis. Pediatr Infect Dis J. 2003;22(5):434–8.

    PubMed  Google Scholar 

  118. Mohebali M, et al. Comparison of miltefosine and meglumine antimoniate for the treatment of zoonotic cutaneous leishmaniasis (ZCL) by a randomized clinical trial in Iran. Acta Trop. 2007;103(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  119. Zerpa O, et al. Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol. 2007;156(6):1328–35.

    Article  CAS  PubMed  Google Scholar 

  120. Dorlo TP, et al. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–97.

    Article  CAS  PubMed  Google Scholar 

  121. Lux H, et al. Ether lipid metabolism, GPI anchor biosynthesis, and signal transduction are putative targets for anti-leishmanial alkyl phospholipid analogues. Adv Exp Med Biol. 1996;416:201–11.

    Article  CAS  PubMed  Google Scholar 

  122. Croft SL, Seifert K, Duchene M. Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol. 2003;126(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  123. Lux H, et al. Ether--lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether--lipid analogues in Leishmania. Mol Biochem Parasitol. 2000;111(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  124. Zufferey R, Mamoun CB. Choline transport in Leishmania major promastigotes and its inhibition by choline and phosphocholine analogs. Mol Biochem Parasitol. 2002;125(1–2):127–34.

    Article  CAS  PubMed  Google Scholar 

  125. Paris C, et al. Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2004;48(3):852–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Perez-Victoria FJ, Castanys S, Gamarro F. Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother. 2003;47(8):2397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Perez-Victoria JM, et al. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother. 2001;45(9):2468–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Castanys-Munoz E, et al. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol. 2007;64(5):1141–53.

    Article  CAS  PubMed  Google Scholar 

  129. Mishra J, Singh S. Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Exp Parasitol. 2013;135(2):397–406.

    Article  CAS  PubMed  Google Scholar 

  130. Kager PA, et al. Allopurinol in the treatment of visceral leishmaniasis. Trans R Soc Trop Med Hyg. 1981;75(4):556–9.

    Article  CAS  PubMed  Google Scholar 

  131. Chunge CN, et al. Visceral leishmaniasis unresponsive to antimonial drugs. III. Successful treatment using a combination of sodium stibogluconate plus allopurinol. Trans R Soc Trop Med Hyg. 1985;79(5):715–8.

    Article  CAS  PubMed  Google Scholar 

  132. Singh NK, et al. Combination therapy in Kala-azar. J Assoc Physicians India. 1995;43(5):319–20.

    CAS  PubMed  Google Scholar 

  133. Martinez S, Marr JJ. Allopurinol in the treatment of American cutaneous leishmaniasis. N Engl J Med. 1992;326(11):741–4.

    Article  CAS  PubMed  Google Scholar 

  134. Nelson DJ, et al. Allopurinol ribonucleoside as an antileishmanial agent. Biological effects, metabolism, and enzymatic phosphorylation. J Biol Chem. 1979;254(22):11544–9.

    CAS  PubMed  Google Scholar 

  135. Rainey P, Santi DV. Metabolism and mechanism of action of formycin B in Leishmania. Proc Natl Acad Sci U S A. 1983;80(1):288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dalbeth N, Stamp L. Allopurinol dosing in renal impairment: walking the tightrope between adequate urate lowering and adverse events. Semin Dial. 2007;20(5):391–5.

    Article  PubMed  Google Scholar 

  137. Jernigan JA, et al. In vitro activity of atovaquone against Leishmania chagasi promastigotes. Antimicrob Agents Chemother. 1996;40(4):1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Murray HW, Hariprashad J. Activity of oral atovaquone alone and in combination with antimony in experimental visceral leishmaniasis. Antimicrob Agents Chemother. 1996;40(3):586–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991;102(Pt 1):17–26.

    Article  PubMed  Google Scholar 

  140. Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol. 1992;43(7):1545–53.

    Article  CAS  PubMed  Google Scholar 

  141. Cauchetier E, et al. Characterisation of atovaquone resistance in Leishmania infantum promastigotes. Int J Parasitol. 2002;32(8):1043–51.

    Article  CAS  PubMed  Google Scholar 

  142. Chunge CN, et al. Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Trans R Soc Trop Med Hyg. 1990;84(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  143. Jha TK, et al. Randomised controlled trial of aminosidine (paromomycin) v sodium stibogluconate for treating visceral leishmaniasis in North Bihar, India. BMJ. 1998;316(7139):1200–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Thakur CP, et al. Aminosidine plus sodium stibogluconate for the treatment of Indian kala-azar: a randomized dose-finding clinical trial. Trans R Soc Trop Med Hyg. 1995;89(2):219–23.

    Article  CAS  PubMed  Google Scholar 

  145. Melaku Y, et al. Treatment of kala-azar in southern Sudan using a 17-day regimen of sodium stibogluconate combined with paromomycin: a retrospective comparison with 30-day sodium stibogluconate monotherapy. Am J Trop Med Hyg. 2007;77(1):89–94.

    CAS  PubMed  Google Scholar 

  146. Sundar S, et al. Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med. 2007;356(25):2571–81.

    Article  CAS  PubMed  Google Scholar 

  147. Thakur CP, et al. Treatment of visceral leishmaniasis with injectable paromomycin (aminosidine). An open-label randomized phase-II clinical study. Trans R Soc Trop Med Hyg. 2000;94(4):432–3.

    Article  CAS  PubMed  Google Scholar 

  148. Shakya N, Bajpai P, Gupta S. Therapeutic switching in leishmania chemotherapy: a distinct approach towards unsatisfied treatment needs. J Parasit Dis. 2011;35(2):104–12.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sosa N, et al. Randomized, double-blinded, phase 2 trial of WR 279,396 (paromomycin and gentamicin) for cutaneous leishmaniasis in Panama. Am J Trop Med Hyg. 2013;89(3):557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Maarouf M, et al. Biochemical alterations in paromomycin-treated Leishmania donovani promastigotes. Parasitol Res. 1997;83(2):198–202.

    Article  CAS  PubMed  Google Scholar 

  151. Jhingran A, et al. Paromomycin: uptake and resistance in Leishmania donovani. Mol Biochem Parasitol. 2009;164(2):111–7.

    Article  CAS  PubMed  Google Scholar 

  152. Maarouf M, et al. Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite. 1998;5(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  153. Bhandari V, et al. Elucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2014;58(5):2580–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Chawla B, et al. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One. 2011;6(10), e26660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Alrajhi AA, et al. Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N Engl J Med. 2002;346(12):891–5.

    Article  CAS  PubMed  Google Scholar 

  156. Sousa AQ, et al. High-dose oral fluconazole therapy effective for cutaneous leishmaniasis due to Leishmania (Vianna) braziliensis. Clin Infect Dis. 2011;53(7):693–5.

    Article  CAS  PubMed  Google Scholar 

  157. Emad M, et al. Superior efficacy of oral fluconazole 400 mg daily versus oral fluconazole 200 mg daily in the treatment of cutaneous Leishmania major infection: a randomized clinical trial. J Am Acad Dermatol. 2011;64(3):606–8.

    Article  CAS  PubMed  Google Scholar 

  158. Goad LJ, et al. The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol. 1989;32(2–3):179–89.

    Article  CAS  PubMed  Google Scholar 

  159. Sherwood JA, et al. Phase 2 efficacy trial of an oral 8-aminoquinoline (WR6026) for treatment of visceral leishmaniasis. Clin Infect Dis. 1994;19(6):1034–9.

    Article  CAS  PubMed  Google Scholar 

  160. Jha TK, et al. A phase II dose-ranging study of sitamaquine for the treatment of visceral leishmaniasis in India. Am J Trop Med Hyg. 2005;73(6):1005–11.

    CAS  PubMed  Google Scholar 

  161. Wasunna MK, et al. A phase II dose-increasing study of sitamaquine for the treatment of visceral leishmaniasis in Kenya. Am J Trop Med Hyg. 2005;73(5):871–6.

    CAS  PubMed  Google Scholar 

  162. Dietze R, et al. Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg. 2001;65(6):685–9.

    Article  CAS  PubMed  Google Scholar 

  163. Garnier T, et al. In-vitro and in-vivo studies on a topical formulation of sitamaquine dihydrochloride for cutaneous leishmaniasis. J Pharm Pharmacol. 2006;58(8):1043–54.

    Article  CAS  PubMed  Google Scholar 

  164. Loiseau PM, Cojean S, Schrevel J. Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite. 2011;18(2):115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med. 2012;5(6):485–97.

    Article  CAS  PubMed  Google Scholar 

  166. Lopez-Martin C, et al. Sitamaquine sensitivity in Leishmania species is not mediated by drug accumulation in acidocalcisomes. Antimicrob Agents Chemother. 2008;52(11):4030–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Steinhaus RK, et al. Formation of methemoglobin and metmyoglobin using 8-aminoquinoline derivatives or sodium nitrite and subsequent reaction with cyanide. J Appl Toxicol. 1990;10(5):345–51.

    Article  CAS  PubMed  Google Scholar 

  168. Coimbra ES, et al. Mechanism of interaction of sitamaquine with Leishmania donovani. J Antimicrob Chemother. 2010;65(12):2548–55.

    Article  CAS  PubMed  Google Scholar 

  169. Imbert L, et al. Sitamaquine-resistance in Leishmania donovani affects drug accumulation and lipid metabolism. Biomed Pharmacother. 2014;68(7):893–7.

    Article  CAS  PubMed  Google Scholar 

  170. Kaur K, et al. Effects of DL-alpha-difluoromethylornithine on Leishmania donovani promastigotes. J Protozool. 1986;33(4):518–21.

    Article  CAS  PubMed  Google Scholar 

  171. Mukhopadhyay R, Kapoor P, Madhubala R. Characterization of alpha-difluoromethylornithine resistant Leishmania donovani and its susceptibility to other inhibitors of the polyamine biosynthetic pathway. Pharmacol Res. 1996;34(1–2):43–6.

    Article  CAS  PubMed  Google Scholar 

  172. Poulin R, et al. Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem. 1992;267(1):150–8.

    CAS  PubMed  Google Scholar 

  173. Docampo R, Moreno SN. Current chemotherapy of human African trypanosomiasis. Parasitol Res. 2003;90(Supp 1):S10–3.

    PubMed  Google Scholar 

  174. Coons T, et al. Alpha-difluoromethylornithine resistance in Leishmania donovani is associated with increased ornithine decarboxylase activity. Mol Biochem Parasitol. 1990;39(1):77–89.

    Article  CAS  PubMed  Google Scholar 

  175. Hanson S, et al. Unstable amplification of two extrachromosomal elements in alpha-difluoromethylornithine-resistant Leishmania donovani. Mol Cell Biol. 1992;12(12):5499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Singh AK, et al. A quantitative proteomic screen to identify potential drug resistance mechanism in alpha-difluoromethylornithine (DFMO) resistant Leishmania donovani. J Proteomics. 2014;102:44–59.

    Article  CAS  PubMed  Google Scholar 

  177. Mukhopadhyay R, Madhubala R. Effects of bis(benzyl)polyamine analogs on Leishmania donovani promastigotes. Exp Parasitol. 1995;81(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  178. Ivanetich KM, Santi DV. Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J. 1990;4(6):1591–7.

    CAS  PubMed  Google Scholar 

  179. Nare B, et al. New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity. Parasitology. 1997;114(Suppl):S101–10.

    PubMed  Google Scholar 

  180. Bello AR, et al. PTR1: a reductase mediating salvage of oxidized pteridines and methotrexate resistance in the protozoan parasite Leishmania major. Proc Natl Acad Sci U S A. 1994;91(24):11442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ouellette M, et al. In: Rosen B.P.a.M.S., editor. Resolving the antibiotic paradox. New York: Plenum Publishing Corporation; 1998. p. 99–113.

    Google Scholar 

  182. Ellenberger TE, Beverley SM. Multiple drug resistance and conservative amplification of the H region in Leishmania major. J Biol Chem. 1989;264(25):15094–103.

    CAS  PubMed  Google Scholar 

  183. Kaur K, et al. Methotrexate-resistant Leishmania donovani genetically deficient in the folate-methotrexate transporter. J Biol Chem. 1988;263(15):7020–8.

    CAS  PubMed  Google Scholar 

  184. Coderre JA, et al. Overproduction of a bifunctional thymidylate synthetase-dihydrofolate reductase and DNA amplification in methotrexate-resistant Leishmania tropica. Proc Natl Acad Sci U S A. 1983;80(8):2132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Beverley SM, et al. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization. Cell. 1984;38(2):431–9.

    Article  CAS  PubMed  Google Scholar 

  186. Gamarro F, et al. P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochem Pharmacol. 1994;47(11):1939–47.

    Article  CAS  PubMed  Google Scholar 

  187. Kundig C, et al. Role of the locus and of the resistance gene on gene amplification frequency in methotrexate resistant Leishmania tarentolae. Nucleic Acids Res. 1999;27(18):3653–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Richard D, Kundig C, Ouellette M. A new type of high affinity folic acid transporter in the protozoan parasite Leishmania and deletion of its gene in methotrexate-resistant cells. J Biol Chem. 2002;277(33):29460–7.

    Article  CAS  PubMed  Google Scholar 

  189. El-Fadili A, et al. Effect of polyglutamylation of methotrexate on its accumulation and the development of resistance in the protozoan parasite Leishmania. Biochem Pharmacol. 2003;66(6):999–1008.

    Article  CAS  PubMed  Google Scholar 

  190. Gallego C, et al. Overexpression of AP endonuclease protects Leishmania major cells against methotrexate induced DNA fragmentation and hydrogen peroxide. Mol Biochem Parasitol. 2005;141(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  191. Drummelsmith J, et al. Differential protein expression analysis of Leishmania major reveals novel roles for methionine adenosyltransferase and S-adenosylmethionine in methotrexate resistance. J Biol Chem. 2004;279(32):33273–80.

    Article  CAS  PubMed  Google Scholar 

  192. Arrebola R, et al. Isolation and characterization of a mutant dihydrofolate reductase-thymidylate synthase from methotrexate-resistant Leishmania cells. J Biol Chem. 1994;269(14):10590–6.

    CAS  PubMed  Google Scholar 

  193. Bhattacharyya A, Mukherjee M, Duttagupta S. Studies on stibanate unresponsive isolates of Leishmania donovani. J Biosci. 2002;27(5):503–8.

    Article  PubMed  Google Scholar 

  194. Sereno D, Lemesre JL. In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob Agents Chemother. 1997;41(9):1898–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Boucher N, et al. The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. Nucleic Acids Res. 2004;32(9):2925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Vanaerschot M, et al. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS Microbiol Rev. 2014;38(1):41–55.

    Article  CAS  PubMed  Google Scholar 

  197. Kaur G, Rajput B. Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in Leishmania. J Parasitol Res. 2014;2014:726328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Moreira W, Leprohon P, Ouellette M. Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania. Cell Death Dis. 2011;2:e201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Mukhopadhyay Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mandal, G., Govindarajan, V., Sharma, M., Bhattacharjee, H., Mukhopadhyay, R. (2017). Drug Resistance in Leishmania . In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_42

Download citation

Publish with us

Policies and ethics