Skip to main content

HCV Drug Resistance

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Treatment of hepatitis C virus (HCV) infection has rapidly evolved since the initial interferon-alfa (IFN-α)-based therapy was introduced in 1989 [1]. Improved formulations of IFN-α and coadministration of ribavirin (RBV) resulted in HCV-sustained viral response (SVR) rates of approximately 50 %, which is dependent on HCV genotype (Fig. 39.1) [2]. The approval of the first direct-acting antiviral (DAA) protease inhibitors (PIs) in 2010, when used in combination with IFN-α and RBV, further improved SVR rates to 70–80 % (Fig. 39.1) [2]. However, a low barrier to resistance associated with the protease inhibitors allowed for frequent emergence of treatment-associated resistance variants. Rapid emergence of resistance-associated variants (RAVs) was also observed with the superbly potent class of NS5A replication inhibitors, precluding their use as a single agent and for specific genotype variants. Although nucleoside inhibitors were one of the first classes of HCV DAAs in preclinical development, approval of a nucleotide prodrug-based HCV treatment regimen with IFN-α and RBV was secondary to the protease inhibitors. Therapies that include nucleotide prodrugs can achieve SVR rates of nearly 100 % depending on the genotypes and DAA drug combinations assessed. Clinical trials are focusing mainly on combination regimens that include a nucleotide prodrug and at least one other DAA class, with the focus residing in prevention of RAV emergence and shorter treatment duration. Knowledge of treatment-emergent RAVs will either guide clinicians in their selection of combination therapies for HCV or serve as a historical perspective of resistance once observed prior to a single-pill combination regimen that does not select resistant variants [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schvarcz R, Weiland O, Wejstal R, Norkrans G, Fryden A, Foberg U. A randomized controlled open study of interferon alpha-2b treatment of chronic non-A, non-B posttransfusion hepatitis: no correlation of outcome to presence of hepatitis C virus antibodies. Scand J Infect Dis. 1989;21(6):617–25.

    Article  CAS  PubMed  Google Scholar 

  2. Rice CM, Saeed M. Hepatitis C: treatment triumphs. Nature. 2014;510(7503):43–4.

    Article  CAS  PubMed  Google Scholar 

  3. Ansaldi F, Orsi A, Sticchi L, Bruzzone B, Icardi G. Hepatitis C virus in the new era: perspectives in epidemiology, prevention, diagnostics and predictors of response to therapy. World J Gastroenterol. 2014;20(29):9633–52.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boesecke CaW J-C. Hepatitis C. In: Mauss S et al., editors. Hepatology: a clinical textbook. Germany: Flying Publisher; 2014.

    Google Scholar 

  5. Kohli A, Shaffer A, Sherman A, Kottilil S. Treatment of hepatitis C: a systematic review. JAMA. 2014;312(6):631–40.

    Article  CAS  PubMed  Google Scholar 

  6. Chak E, Talal AH, Sherman KE, Schiff ER, Saab S. Hepatitis C virus infection in USA: an estimate of true prevalence. Liver Int. 2011;31(8):1090–101.

    Article  PubMed  Google Scholar 

  7. Mohd Hanafiah K, Groeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):1333–42.

    Article  PubMed  Google Scholar 

  8. Wasley A, Alter MJ. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin Liver Dis. 2000;20(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  9. Lavanchy D. Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect. 2011;17(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  10. Razavi H, Gower E, Hindman S, Estes C. Global distribution of HCV genotypes. In: The 64th annual meeting of the AASLD, Washington, DC; 1–5 Nov 2013.

    Google Scholar 

  11. http://www.cdc.gov/hepatitis/hcv/hcvfaq.htm

  12. Buhler S, Bartenschlager R. New targets for antiviral therapy of chronic hepatitis C. Liver Int. 2012;32 Suppl 1:9–16.

    Article  PubMed  CAS  Google Scholar 

  13. Giannini C, Brechot C. Hepatitis C virus biology. Cell Death Differ. 2003;10 Suppl 1:S27–38.

    Article  CAS  PubMed  Google Scholar 

  14. Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM. Structural biology of hepatitis C virus. Hepatology. 2004;39(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  15. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol. 2007;81(16):8374–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. StGelais C, Foster TL, Verow M, Atkins E, Fishwick CW, Rowlands D, Harris M, Griffin S. Determinants of hepatitis C virus p7 ion channel function and drug sensitivity identified in vitro. J Virol. 2009;83(16):7970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeisel MB, Barth H, Schuster C, Baumert TF. Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Front Biosci (Landmark Ed). 2009;14:3274–85.

    Article  CAS  Google Scholar 

  18. OuYang B, Xie S, Berardi MJ, Zhao X, Dev J, Yu W, Sun B, Chou JJ. Unusual architecture of the p7 channel from hepatitis C virus. Nature. 2013;498(7455):521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nayak A, Pattabiraman N, Fadra N, Goldman R, Kosakovsky Pond SL, Mazumder R. Structure-function analysis of hepatitis C virus envelope glycoproteins E1 and E2. J Biomol Struct Dyn. 2015;33(8):1682–94.

    Article  CAS  PubMed  Google Scholar 

  20. Murray CL, Jones CT, Tassello J, Rice CM. Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J Virol. 2007;81(19):10220–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pieroni L, Santolini E, Fipaldini C, Pacini L, Migliaccio G, La Monica N. In vitro study of the NS2-3 protease of hepatitis C virus. J Virol. 1997;71(9):6373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shaw J, Fishwick CW, Harris M. Epoxide based inhibitors of the hepatitis C virus non-structural 2 autoprotease. Antiviral Res. 2015;117:20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martell M, Esteban JI, Quer J, Genescà J, Weiner A, Esteban R, Guardia J, Gómez J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol. 1992;66(5):3225–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science. 1998;282(5386):103–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lange CM, Sarrazin C, Zeuzem S. Review article: specifically targeted anti-viral therapy for hepatitis C—a new era in therapy. Aliment Pharmacol Ther. 2010;32(1):14–28.

    Article  CAS  PubMed  Google Scholar 

  26. Fridell RA, Wang C, Sun JH, O’Boyle DR, Nower P, Valera L, Qiu D, Roberts S, Huang X, Kienzle B, et al. Genotypic and phenotypic analysis of variants resistant to hepatitis C virus nonstructural protein 5A replication complex inhibitor BMS-790052 in humans: in vitro and in vivo correlations. Hepatology. 2011;54(6):1924–35.

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan JC, De Meyer S, Bartels DJ, Dierynck I, Zhang EZ, Spanks J, Tigges AM, Ghys A, Dorrian J, Adda N, et al. Evolution of treatment-emergent resistant variants in telaprevir phase 3 clinical trials. Clin Infect Dis. 2013;57(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Sun JH, O’Boyle DR, Nower P, Valera L, Roberts S, Fridell RA, Gao M. Persistence of resistant variants in hepatitis C virus-infected patients treated with the NS5A replication complex inhibitor daclatasvir. Antimicrob Agents Chemother. 2013;57(5):2054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19(7):636–9.

    Article  CAS  PubMed  Google Scholar 

  30. Svarovskaia ES, Martin R, McHutchison JG, Miller MD, Mo H. Abundant drug-resistant NS3 mutants detected by deep sequencing in hepatitis C virus-infected patients undergoing NS3 protease inhibitor monotherapy. J Clin Microbiol. 2012;50(10):3267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas XV, de Bruijne J, Sullivan JC, Kieffer TL, Ho CK, Rebers SP, de Vries M, Reesink HW, Weegink CJ, Molenkamp R, et al. Evaluation of persistence of resistant variants with ultra-deep pyrosequencing in chronic hepatitis C patients treated with telaprevir. PLoS One. 2012;7(7):e41191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Akuta N, Suzuki F, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Saitoh S, Ikeda K, Kumada H. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b. J Med Virol. 2014;86(8):1314–22.

    Article  CAS  PubMed  Google Scholar 

  33. Kosaka K, Imamura M, Hayes CN, Abe H, Hiraga N, Yoshimi S, Murakami E, Kawaoka T, Tsuge M, Aikata H, et al. Emergence of resistant variants detected by ultra-deep sequencing after asunaprevir and daclatasvir combination therapy in patients infected with hepatitis C virus genotype 1. J Viral Hepat. 2014;22:158–65.

    Article  PubMed  CAS  Google Scholar 

  34. Miura M, Maekawa S, Sato M, Komatsu N, Tatsumi A, Takano S, Amemiya F, Nakayama Y, Inoue T, Sakamoto M, et al. Deep sequencing analysis of variants resistant to the non-structural 5A inhibitor daclatasvir in patients with genotype 1b hepatitis C virus infection. Hepatol Res. 2014;44:E360–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bartolini B, Giombini E, Zaccaro P, Selleri M, Rozera G, Abbate I, Comandini UV, Ippolito G, Solmone M, Capobianchi MR. Extent of HCV NS3 protease variability and resistance-associated mutations assessed by next generation sequencing in HCV monoinfected and HIV/HCV coinfected patients. Virus Res. 2013;177(2):205–8.

    Article  CAS  PubMed  Google Scholar 

  36. Paolucci S, Fiorina L, Piralla A, Gulminetti R, Novati S, Barbarini G, Sacchi P, Gatti M, Dossena L, Baldanti F. Naturally occurring mutations to HCV protease inhibitors in treatment-naïve patients. Virol J. 2012;9:245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartels DJ, Sullivan JC, Zhang EZ, Tigges AM, Dorrian JL, De Meyer S, Takemoto D, Dondero E, Kwong AD, Picchio G, et al. Hepatitis C virus variants with decreased sensitivity to direct-acting antivirals (DAAs) were rarely observed in DAA-naive patients prior to treatment. J Virol. 2013;87(3):1544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Meyer S, Dierynck I, Ghys A, Beumont M, Daems B, Van Baelen B, Sullivan JC, Bartels DJ, Kieffer TL, Zeuzem S, et al. Characterization of telaprevir treatment outcomes and resistance in patients with prior treatment failure: results from the REALIZE trial. Hepatology. 2012;56(6):2106–15.

    Article  PubMed  CAS  Google Scholar 

  39. Forns X, Lawitz E, Zeuzem S, Gane E, Bronowicki JP, Andreone P, Horban A, Brown A, Peeters M, Lenz O, et al. Simeprevir with peginterferon and ribavirin leads to high rates of SVR in patients with HCV genotype 1 who relapsed after previous therapy: a phase 3 trial. Gastroenterology. 2014;146(7):1669–79. e3.

    Article  CAS  PubMed  Google Scholar 

  40. Jacobson IM, Gordon SC, Kowdley KV, Yoshida EM, Rodriguez-Torres M, Sulkowski MS, Shiffman ML, Lawitz E, Everson G, Bennett M, et al. Sofosbuvir for hepatitis C genotype 2 or 3 in patients without treatment options. N Engl J Med. 2013;368(20):1867–77.

    Article  CAS  PubMed  Google Scholar 

  41. Di Maio VC, Cento V, Mirabelli C, Artese A, Costa G, Alcaro S, Perno CF, Ceccherini-Silberstein F. Hepatitis C virus genetic variability and the presence of NS5B resistance-associated mutations as natural polymorphisms in selected genotypes could affect the response to NS5B inhibitors. Antimicrob Agents Chemother. 2014;58(5):2781–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kwong AD, Najera I, Bechtel J, Bowden S, Fitzgibbon J, Harrington P, Kempf D, Kieffer TL, Koletzki D, Kukolj G, et al. Sequence and phenotypic analysis for resistance monitoring in hepatitis C virus drug development: recommendations from the HCV DRAG. Gastroenterology. 2011;140(3):755–60.

    Article  PubMed  Google Scholar 

  43. Middleton T, He Y, Pilot-Matias T, Tripathi R, Lim BH, Roth A, Chen CM, Koev G, Ng TI, Krishnan P, et al. A replicon-based shuttle vector system for assessing the phenotype of HCV NS5B polymerase genes isolated from patient populations. J Virol Methods. 2007;145(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  44. Tripathi RL, Krishnan P, He Y, Middleton T, Pilot-Matias T, Chen CM, Lau DT, Lemon SM, Mo H, Kati W, et al. Replication efficiency of chimeric replicon containing NS5A-5B genes derived from HCV-infected patient sera. Antiviral Res. 2007;73(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sheaffer AK, Lee MS, Hernandez D, Chaniewski S, Yu F, Falk P, Friborg J, Zhai G, McPhee F. Development of a chimeric replicon system for phenotypic analysis of NS3 protease sequences from HCV clinical isolates. Antivir Ther. 2011;16(5):705–18.

    Article  CAS  PubMed  Google Scholar 

  46. Ogura N, Toyonaga Y, Ando I, Hirahara K, Shibata T, Turcanu G, Pai S, Yee K, Gerhardt B, Rodriguez-Torres M, et al. Genotypic and phenotypic analyses of hepatitis C virus from patients treated with JTK-853 in a three-day monotherapy. Antimicrob Agents Chemother. 2013;57(1):436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajyaguru S, Yang H, Martin R, Miller MD, Mo H. Development and characterization of a replicon-based phenotypic assay for assessing HCV NS4B from clinical isolates. Antiviral Res. 2013;100(2):328–36.

    Article  CAS  PubMed  Google Scholar 

  48. Lohmann V, Korner F, Koch J, Herian U, Theilmann L, Bartenschlager R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science. 1999;285(5424):110–3.

    Article  CAS  PubMed  Google Scholar 

  49. Guo JT, Bichko VV, Seeger C. Effect of alpha interferon on the hepatitis C virus replicon. J Virol. 2001;75(18):8516–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Blight KJ, McKeating JA, Marcotrigiano J, Rice CM. Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol. 2003;77(5):3181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu B, Gates AT, Isken O, Behrens SE, Sarisky RT. Replication studies using genotype 1a subgenomic hepatitis C virus replicons. J Virol. 2003;77(9):5352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K, Mizokami M, Wakita T. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology. 2003;125(6):1808–17.

    Article  CAS  PubMed  Google Scholar 

  53. Bartenschlager R, Sparacio S. Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Res. 2007;127(2):195–207.

    Article  CAS  PubMed  Google Scholar 

  54. Saeed M, Scheel TK, Gottwein JM, Marukian S, Dustin LB, Bukh J, Rice CM. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob Agents Chemother. 2012;56(10):5365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wose Kinge CN, Espiritu C, Prabdial-Sing N, Sithebe NP, Saeed M, Rice CM. Hepatitis C virus genotype 5a subgenomic replicons for evaluation of direct-acting antiviral agents. Antimicrob Agents Chemother. 2014;58(9):5386–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lanford RE, Guerra B, Lee H. Hepatitis C virus genotype 1b chimeric replicon containing genotype 3 NS5A domain. Virology. 2006;355(2):192–202.

    Article  CAS  PubMed  Google Scholar 

  57. Herlihy KJ, Graham JP, Kumpf R, Patick AK, Duggal R, Shi ST. Development of intergenotypic chimeric replicons to determine the broad-spectrum antiviral activities of hepatitis C virus polymerase inhibitors. Antimicrob Agents Chemother. 2008;52(10):3523–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Imhof I, Simmonds P. Development of an intergenotypic hepatitis C virus (HCV) cell culture method to assess antiviral susceptibilities and resistance development of HCV NS3 protease genes from HCV genotypes 1 to 6. J Virol. 2010;84(9):4597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Habermann A, Krausslich HG, Mizokami M, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R. Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol. 2008;82(5):2241–9.

    Article  CAS  PubMed  Google Scholar 

  61. Saeed M, Gondeau C, Hmwe S, Yokokawa H, Date T, Suzuki T, Kato T, Maurel P, Wakita T. Replication of hepatitis C virus genotype 3a in cultured cells. Gastroenterology. 2013;144(1):56–8. e57.

    Article  CAS  PubMed  Google Scholar 

  62. Ma Y, Shimakami T, Luo H, Hayashi N, Murakami S. Mutational analysis of hepatitis C virus NS5B in the subgenomic replicon cell culture. J Biol Chem. 2004;279(24):25474–82.

    Article  CAS  PubMed  Google Scholar 

  63. Yi M, Villanueva RA, Thomas DL, Wakita T, Lemon SM. Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci U S A. 2006;103(7):2310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li YP, Ramirez S, Jensen SB, Purcell RH, Gottwein JM, Bukh J. Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc Natl Acad Sci U S A. 2012;109(48):19757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu M, Corsa AC, Xu S, Peng B, Gong R, Lee YJ, Chan K, Mo H, Delaney W, Cheng G. In vitro efficacy of approved and experimental antivirals against novel genotype 3 hepatitis C virus subgenomic replicons. Antiviral Res. 2013;100(2):439–45.

    Article  CAS  PubMed  Google Scholar 

  66. Bilello JP, Lallos LB, McCarville JF, La Colla M, Serra I, Chapron C, Gillum JM, Pierra C, Standring DN, Seifer M. In vitro activity and resistance profile of samatasvir, a novel NS5A replication inhibitor of hepatitis C virus. Antimicrob Agents Chemother. 2014;58(8):4431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang H, Robinson M, Corsa AC, Peng B, Cheng G, Tian Y, Wang Y, Pakdaman R, Shen M, Qi X, et al. Preclinical characterization of the novel hepatitis C virus NS3 protease inhibitor GS-9451. Antimicrob Agents Chemother. 2014;58(2):647–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Jiang M, Zhang EZ, Ardzinski A, Tigges A, Davis A, Sullivan JC, Nelson M, Spanks J, Dorrian J, Nicolas O, et al. Genotypic and phenotypic analyses of hepatitis C virus variants observed in clinical studies of VX-222, a nonnucleoside NS5B polymerase inhibitor. Antimicrob Agents Chemother. 2014;58(9):5456–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lam AM, Espiritu C, Bansal S, Micolochick Steuer HM, Niu C, Zennou V, Keilman M, Zhu Y, Lan S, Otto MJ, et al. Genotype and subtype profiling of PSI-7977 as a nucleotide inhibitor of hepatitis C virus. Antimicrob Agents Chemother. 2012;56(6):3359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McCown MF, Rajyaguru S, Le Pogam S, Ali S, Jiang WR, Kang H, Symons J, Cammack N, Najera I. The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to nonnucleoside polymerase or protease inhibitors. Antimicrob Agents Chemother. 2008;52(5):1604–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Summa V, Ludmerer SW, McCauley JA, Fandozzi C, Burlein C, Claudio G, Coleman PJ, Dimuzio JM, Ferrara M, Di Filippo M, et al. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother. 2012;56(8):4161–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kieffer TL, George S. Resistance to hepatitis C virus protease inhibitors. Curr Opin Virol. 2014;8C:16–21.

    Article  CAS  Google Scholar 

  73. Lemm JA, Liu M, Gentles RG, Ding M, Voss S, Pelosi LA, Wang YK, Rigat KL, Mosure KW, Bender JA, et al. Preclinical characterization of BMS-791325, an allosteric inhibitor of hepatitis C Virus NS5B polymerase. Antimicrob Agents Chemother. 2014;58(6):3485–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sato A, Yamauchi M, Yamada T, Kumano R, Adachi K, Ishii T, Hayashi M, Kumon D. Successful natural interferon-β plus ribavirin therapy in a chronic hepatitis C patient after discontinuation of interferon-α treatment due to arrhythmia and interstitial pneumonia. Clin J Gastroenterol. 2014;7:355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. AASLD/IDSA/IAS-USA: Recommendations for testing, managing, and treating hepatitis C. 2014. http://www.hcvguidelines.org/fullreport.

  76. Tam RC, Pai B, Bard J, Lim C, Averett DR, Phan UT, Milovanovic T. Ribavirin polarizes human T cell responses towards a Type 1 cytokine profile. J Hepatol. 1999;30(3):376–82.

    Article  CAS  PubMed  Google Scholar 

  77. Thomas E, Feld JJ, Li Q, Hu Z, Fried MW, Liang TJ. Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models. Hepatology. 2011;53(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  78. Liu WL, Yang HC, Su WC, Wang CC, Chen HL, Wang HY, Huang WH, Chen DS, Lai MY. Ribavirin enhances the action of interferon-α against hepatitis C virus by promoting the p53 activity through the ERK1/2 pathway. PLoS One. 2012;7(9):e43824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hofmann WP, Polta A, Herrmann E, Mihm U, Kronenberger B, Sonntag T, Lohmann V, Schönberger B, Zeuzem S, Sarrazin C. Mutagenic effect of ribavirin on hepatitis C nonstructural 5B quasispecies in vitro and during antiviral therapy. Gastroenterology. 2007;132(3):921–30.

    Article  CAS  PubMed  Google Scholar 

  80. Lutchman G, Danehower S, Song BC, Liang TJ, Hoofnagle JH, Thomson M, Ghany MG. Mutation rate of the hepatitis C virus NS5B in patients undergoing treatment with ribavirin monotherapy. Gastroenterology. 2007;132(5):1757–66.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology. 2003;310(2):333–42.

    Article  CAS  PubMed  Google Scholar 

  82. Pfeiffer JK, Kirkegaard K. Ribavirin resistance in hepatitis C virus replicon-containing cell lines conferred by changes in the cell line or mutations in the replicon RNA. J Virol. 2005;79(4):2346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399–401.

    Article  CAS  PubMed  Google Scholar 

  84. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML, Bassendine M, Spengler U, Dore GJ, Powell E, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet. 2009;41(10):1100–4.

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N, Nakagawa M, Korenaga M, Hino K, Hige S, et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet. 2009;41(10):1105–9.

    Article  CAS  PubMed  Google Scholar 

  86. Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol. 2014;61(1 Suppl):S14–25.

    Article  CAS  PubMed  Google Scholar 

  87. Marcello T, Grakoui A, Barba-Spaeth G, Machlin ES, Kotenko SV, MacDonald MR, Rice CM. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology. 2006;131(6):1887–98.

    Article  PubMed  Google Scholar 

  88. Reddy KR, Shiffman ML, Rodriguez-Torres M, Cheinquer H, Abdurakhmanov D, Bakulin I, Morozov V, Silva GF, Geyvandova N, Stanciu C, et al. Induction pegylated interferon alfa-2a and high dose ribavirin do not increase SVR in heavy patients with HCV genotype 1 and high viral loads. Gastroenterology. 2010;139(6):1972–83.

    Article  CAS  PubMed  Google Scholar 

  89. Chandra PK, Bao L, Song K, Aboulnasr FM, Baker DP, Shores N, Wimley WC, Liu S, Hagedorn CH, Fuchs SY, et al. HCV infection selectively impairs type I but not type III IFN signaling. Am J Pathol. 2014;184(1):214–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu J, HuangFu WC, Kumar KG, Qian J, Casey JP, Hamanaka RB, Grigoriadou C, Aldabe R, Diehl JA, Fuchs SY. Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor. Cell Host Microbe. 2009;5(1):72–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mangia A, Mottola L, Santoro R. Interleukin 28B polymorphisms as predictor of response in hepatitis C virus genotype 2 and 3 infected patients. World J Gastroenterol. 2013;19(47):8924–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chu TW, Kulkarni R, Gane EJ, Roberts SK, Stedman C, Angus PW, Ritchie B, Lu XY, Ipe D, Lopatin U, et al. Effect of IL28B genotype on early viral kinetics during interferon-free treatment of patients with chronic hepatitis C. Gastroenterology. 2012;142(4):790–5.

    Article  CAS  PubMed  Google Scholar 

  93. Simmonds P. Genetic diversity and evolution of hepatitis C virus—15 years on. J Gen Virol. 2004;85(Pt 11):3173–88.

    Article  CAS  PubMed  Google Scholar 

  94. Enomoto N, Sakuma I, Asahina Y, Kurosaki M, Murakami T, Yamamoto C, Izumi N, Marumo F, Sato C. Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest. 1995;96(1):224–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gale MJ, Korth MJ, Tang NM, Tan SL, Hopkins DA, Dever TE, Polyak SJ, Gretch DR, Katze MG. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology. 1997;230(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  96. Taylor DR, Shi ST, Lai MM. Hepatitis C virus and interferon resistance. Microbes Infect. 2000;2(14):1743–56.

    Article  CAS  PubMed  Google Scholar 

  97. Pavio N, Taylor DR, Lai MM. Detection of a novel unglycosylated form of hepatitis C virus E2 envelope protein that is located in the cytosol and interacts with PKR. J Virol. 2002;76(3):1265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tan SL, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs BL, Mayer BJ, Katze MG. NS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci U S A. 1999;96(10):5533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Akuta N, Suzuki F, Sezaki H, Suzuki Y, Hosaka T, Someya T, Kobayashi M, Saitoh S, Watahiki S, Sato J, et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 1b high viral load and non-virological response to interferon-ribavirin combination therapy. Intervirology. 2005;48(6):372–80.

    Article  CAS  PubMed  Google Scholar 

  100. Akuta N, Suzuki F, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Arase Y, Ikeda K, et al. Amino acid substitutions in the hepatitis C virus core region are the important predictor of hepatocarcinogenesis. Hepatology. 2007;46(5):1357–64.

    Article  CAS  PubMed  Google Scholar 

  101. Akuta N, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Saitoh S, et al. Association of amino acid substitution pattern in core protein of hepatitis C virus genotype 2a high viral load and virological response to interferon-ribavirin combination therapy. Intervirology. 2009;52(6):301–9.

    Article  CAS  PubMed  Google Scholar 

  102. Funaoka Y, Sakamoto N, Suda G, Itsui Y, Nakagawa M, Kakinuma S, Watanabe T, Mishima K, Ueyama M, Onozuka I, et al. Analysis of interferon signaling by infectious hepatitis C virus clones with substitutions of core amino acids 70 and 91. J Virol. 2011;85(12):5986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Okada S, Akahane Y, Suzuki H, Okamoto H, Mishiro S. The degree of variability in the amino terminal region of the E2/NS1 protein of hepatitis C virus correlates with responsiveness to interferon therapy in viremic patients. Hepatology. 1992;16(3):619–24.

    Article  CAS  PubMed  Google Scholar 

  104. Nousbaum J, Polyak SJ, Ray SC, Sullivan DG, Larson AM, Carithers RL, Gretch DR. Prospective characterization of full-length hepatitis C virus NS5A quasispecies during induction and combination antiviral therapy. J Virol. 2000;74(19):9028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sarrazin C, Herrmann E, Bruch K, Zeuzem S. Hepatitis C virus nonstructural 5A protein and interferon resistance: a new model for testing the reliability of mutational analyses. J Virol. 2002;76(21):11079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chen L, Borozan I, Feld J, Sun J, Tannis LL, Coltescu C, Heathcote J, Edwards AM, McGilvray ID. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology. 2005;128(5):1437–44.

    Article  CAS  PubMed  Google Scholar 

  107. Chen L, Borozan I, Sun J, Guindi M, Fischer S, Feld J, Anand N, Heathcote J, Edwards AM, McGilvray ID. Cell-type specific gene expression signature in liver underlies response to interferon therapy in chronic hepatitis C infection. Gastroenterology 2010;138(3):1123–33. e1121–3.

    Google Scholar 

  108. Yee LJ, Tang J, Gibson AW, Kimberly R, Van Leeuwen DJ, Kaslow RA. Interleukin 10 polymorphisms as predictors of sustained response in antiviral therapy for chronic hepatitis C infection. Hepatology. 2001;33(3):708–12.

    Article  CAS  PubMed  Google Scholar 

  109. Huang Y, Yang H, Borg BB, Su X, Rhodes SL, Yang K, Tong X, Tang G, Howell CD, Rosen HR, et al. A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proc Natl Acad Sci U S A. 2007;104(3):985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Knapp S, Yee LJ, Frodsham AJ, Hennig BJ, Hellier S, Zhang L, Wright M, Chiaramonte M, Graves M, Thomas HC, et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes Immun. 2003;4(6):411–9.

    Article  CAS  PubMed  Google Scholar 

  111. Suzuki F, Arase Y, Suzuki Y, Tsubota A, Akuta N, Hosaka T, Someya T, Kobayashi M, Saitoh S, Ikeda K, et al. Single nucleotide polymorphism of the MxA gene promoter influences the response to interferon monotherapy in patients with hepatitis C viral infection. J Viral Hepat. 2004;11(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  112. Anjum S, Afzal MS, Ahmad T, Aslam B, Waheed Y, Shafi T, Qadri I. Mutations in the STAT1-interacting domain of the hepatitis C virus core protein modulate the response to antiviral therapy. Mol Med Rep. 2013;8(2):487–92.

    PubMed  Google Scholar 

  113. Khaliq S, Jahan S, Hassan S. Hepatitis C virus p7: molecular function and importance in hepatitis C virus life cycle and potential antiviral target. Liver Int. 2011;31(5):606–17.

    Article  CAS  PubMed  Google Scholar 

  114. Atoom AM, Taylor NG, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology. 2014;462–463:377–87.

    Article  PubMed  CAS  Google Scholar 

  115. Griffin S, Stgelais C, Owsianka AM, Patel AH, Rowlands D, Harris M. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology. 2008;48(6):1779–90.

    Article  CAS  PubMed  Google Scholar 

  116. Foster TL, Verow M, Wozniak AL, Bentham MJ, Thompson J, Atkins E, Weinman SA, Fishwick C, Foster R, Harris M, et al. Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology. 2011;54(1):79–90.

    Article  CAS  PubMed  Google Scholar 

  117. Gallay PA, Lin K. Profile of alisporivir and its potential in the treatment of hepatitis C. Drug Des Devel Ther. 2013;7:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin K, Gallay P. Curing a viral infection by targeting the host: the example of cyclophilin inhibitors. Antiviral Res. 2013;99(1):68–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Inoue K, Sekiyama K, Yamada M, Watanabe T, Yasuda H, Yoshiba M. Combined interferon alpha2b and cyclosporin A in the treatment of chronic hepatitis C: controlled trial. J Gastroenterol. 2003;38(6):567–72.

    CAS  PubMed  Google Scholar 

  120. Madan V, Paul D, Lohmann V, Bartenschlager R. Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology 2014;146(5):1361–72. e1361–9.

    Google Scholar 

  121. Chatterji U, Bobardt M, Tai A, Wood M, Gallay PA. Cyclophilin and NS5A inhibitors, but not other anti-hepatitis C virus (HCV) agents, preclude HCV-mediated formation of double-membrane-vesicle viral factories. Antimicrob Agents Chemother. 2015;59(5):2496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chatterji U, Lim P, Bobardt MD, Wieland S, Cordek DG, Vuagniaux G, Chisari F, Cameron CE, Targett-Adams P, Parkinson T, et al. HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. J Hepatol. 2010;53(1):50–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Puyang X, Poulin DL, Mathy JE, Anderson LJ, Ma S, Fang Z, Zhu S, Lin K, Fujimoto R, Compton T, et al. Mechanism of resistance of hepatitis C virus replicons to structurally distinct cyclophilin inhibitors. Antimicrob Agents Chemother. 2010;54(5):1981–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rosnoblet C, Fritzinger B, Legrand D, Launay H, Wieruszeski JM, Lippens G, Hanoulle X. Hepatitis C virus NS5B and host cyclophilin A share a common binding site on NS5A. J Biol Chem. 2012;287(53):44249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chatterji U, Garcia-Rivera JA, Baugh J, Gawlik K, Wong KA, Zhong W, Brass CA, Naoumov NV, Gallay PA. The combination of alisporivir plus an NS5A inhibitor provides additive to synergistic anti-hepatitis C virus activity without detectable cross-resistance. Antimicrob Agents Chemother. 2014;58(6):3327–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Barnard RJ, Howe JA, Ogert RA, Zeuzem S, Poordad F, Gordon SC, Ralston R, Tong X, Sniukiene V, Strizki J, et al. Analysis of boceprevir resistance associated amino acid variants (RAVs) in two phase 3 boceprevir clinical studies. Virology. 2013;444(1–2):329–36.

    Article  CAS  PubMed  Google Scholar 

  127. López-Labrador FX, Moya A, Gonzàlez-Candelas F. Mapping natural polymorphisms of hepatitis C virus NS3/4A protease and antiviral resistance to inhibitors in worldwide isolates. Antivir Ther. 2008;13(4):481–94.

    PubMed  Google Scholar 

  128. Foster GR, Hézode C, Bronowicki JP, Carosi G, Weiland O, Verlinden L, van Heeswijk R, van Baelen B, Picchio G, Beumont M. Telaprevir alone or with peginterferon and ribavirin reduces HCV RNA in patients with chronic genotype 2 but not genotype 3 infections. Gastroenterology 2011;141(3):881–9. e881.

    Google Scholar 

  129. Lenz O, Vijgen L, Berke JM, Cummings MD, Fevery B, Peeters M, De Smedt G, Moreno C, Picchio G. Virologic response and characterisation of HCV genotype 2–6 in patients receiving TMC435 monotherapy (study TMC435-C202). J Hepatol. 2013;58(3):445–51.

    Article  CAS  PubMed  Google Scholar 

  130. Poveda E, Wyles DL, Mena A, Pedreira JD, Castro-Iglesias A, Cachay E. Update on hepatitis C virus resistance to direct-acting antiviral agents. Antiviral Res. 2014;108C:181–91.

    Article  CAS  Google Scholar 

  131. Pickett BE, Striker R, Lefkowitz EJ. Evidence for separation of HCV subtype 1a into two distinct clades. J Viral Hepat. 2011;18(9):608–18.

    Article  CAS  PubMed  Google Scholar 

  132. De Luca A, Bianco C, Rossetti B. Treatment of HCV infection with the novel NS3/4A protease inhibitors. Curr Opin Pharmacol. 2014;18C:9–17.

    Article  CAS  Google Scholar 

  133. Lawitz E, Sulkowski MS, Ghalib R, Rodriguez-Torres M, Younossi ZM, Corregidor A, DeJesus E, Pearlman B, Rabinovitz M, Gitlin N, et al. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. Lancet. 2014;384(9956):1756–65.

    Article  CAS  PubMed  Google Scholar 

  134. Zeuzem S, Berg T, Gane E, Ferenci P, Foster GR, Fried MW, Hezode C, Hirschfield GM, Jacobson I, Nikitin I, et al. Simeprevir increases rate of sustained virologic response among treatment-experienced patients with HCV genotype-1 infection: a phase IIb trial. Gastroenterology 2014;146(2):430–41. e436.

    Google Scholar 

  135. Lenz O, Verbinnen T, Lin TI, Vijgen L, Cummings MD, Lindberg J, Berke JM, Dehertogh P, Fransen E, Scholliers A, et al. In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother. 2010;54(5):1878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Thibeault D, Bousquet C, Gingras R, Lagacé L, Maurice R, White PW, Lamarre D. Sensitivity of NS3 serine proteases from hepatitis C virus genotypes 2 and 3 to the inhibitor BILN 2061. J Virol. 2004;78(14):7352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pilot-Matias T, Tripathi R, Cohen D, Gaultier I, Dekhtyar T, Lu L, Reisch T, Irvin M, Hopkins T, Pithawalla R, et al. In vitro and in vivo antiviral activity and resistance profile of the hepatitis C virus NS3/4A protease inhibitor ABT-450. Antimicrob Agents Chemother. 2014;59:988–97.

    Article  PubMed  CAS  Google Scholar 

  138. Ali A, Aydin C, Gildemeister R, Romano KP, Cao H, Ozen A, Soumana D, Newton A, Petropoulos CJ, Huang W, et al. Evaluating the role of macrocycles in the susceptibility of hepatitis C virus NS3/4A protease inhibitors to drug resistance. ACS Chem Biol. 2013;8(7):1469–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. HCV Phenotype Working Group, HCV Drug Development Advisory Group. Clinically relevant HCV drug resistance mutations. Ann Forum Collab HIV Res. 2012;14(3):10.

    Google Scholar 

  140. Berger KL, Lagacé L, Triki I, Cartier M, Marquis M, Lawetz C, Bethell R, Scherer J, Kukolj G. Viral resistance in hepatitis C virus genotype 1-infected patients receiving the NS3 protease inhibitor Faldaprevir (BI 201335) in a phase 1b multiple-rising-dose study. Antimicrob Agents Chemother. 2013;57(10):4928–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lagace L, White PW, Bousquet C, Dansereau N, Do F, Llinas-Brunet M, Marquis M, Massariol MJ, Maurice R, Spickler C, et al. In vitro resistance profile of the hepatitis C virus NS3 protease inhibitor BI 201335. Antimicrob Agents Chemother. 2012;56(1):569–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Susser S, Vermehren J, Forestier N, Welker MW, Grigorian N, Füller C, Perner D, Zeuzem S, Sarrazin C. Analysis of long-term persistence of resistance mutations within the hepatitis C virus NS3 protease after treatment with telaprevir or boceprevir. J Clin Virol. 2011;52(4):321–7.

    Article  CAS  PubMed  Google Scholar 

  143. McPhee F, Hernandez D, Yu F, Ueland J, Monikowski A, Carifa A, Falk P, Wang C, Fridell R, Eley T, et al. Resistance analysis of hepatitis C virus genotype 1 prior treatment null responders receiving daclatasvir and asunaprevir. Hepatology. 2013;58(3):902–11.

    Article  CAS  PubMed  Google Scholar 

  144. Abbvie: Full prescribing information for VIEKIRA PAK. 2014. http://www.rxabbvie.com/pdf/viekirapak_pi.pdf

  145. Kim AY, Timm J, Nolan BE, Reyor LL, Kane K, Berical AC, Zachary KC, Lauer GM, Kuntzen T, Allen TM. Temporal dynamics of a predominant protease inhibitor-resistance mutation in a treatment-naive, hepatitis C virus-infected individual. J Infect Dis. 2009;199(5):737–41.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Colson P, Gérolami R. Two years’ persistence of naturally present substitution R155K within hepatitis C virus NS3 protease in the absence of protease inhibitor-based therapy. J Infect Dis. 2011;203(9):1341–2. Author reply 1342–1343.

    Article  PubMed  Google Scholar 

  147. Bryson PD, Cho NJ, Einav S, Lee C, Tai V, Bechtel J, Sivaraja M, Roberts C, Schmitz U, Glenn JS. A small molecule inhibits HCV replication and alters NS4B’s subcellular distribution. Antiviral Res. 2010;87(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang X, Zhang N, Chen G, Turpoff A, Ren H, Takasugi J, Morrill C, Zhu J, Li C, Lennox W, et al. Discovery of novel HCV inhibitors: synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorg Med Chem Lett. 2013;23(13):3947–53.

    Article  CAS  PubMed  Google Scholar 

  149. Tai VW, Garrido D, Price DJ, Maynard A, Pouliot JJ, Xiong Z, Seal 3rd JW, Creech KL, Kryn LH, Baughman TM, et al. Design and synthesis of spirocyclic compounds as HCV replication inhibitors by targeting viral NS4B protein. Bioorg Med Chem Lett. 2014;24(10):2288–94.

    Article  CAS  PubMed  Google Scholar 

  150. Shotwell JB, Baskaran S, Chong P, Creech KL, Crosby RM, Dickson H, Fang J, Garrido D, Mathis A, Maung J, et al. Imidazo[1,2-a]pyridines that directly interact with hepatitis C NS4B: initial preclinical characterization. ACS Med Chem Lett. 2012;3(7):565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gu Z, Graci JD, Lahser FC, Breslin JJ, Jung SP, Crona JH, McMonagle P, Xia E, Liu S, Karp G, et al. Identification of PTC725, an orally bioavailable small molecule that selectively targets the hepatitis C Virus NS4B protein. Antimicrob Agents Chemother. 2013;57(7):3250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dufner-Beattie J, O’Guin A, O’Guin S, Briley A, Wang B, Balsarotti J, Roth R, Starkey G, Slomczynska U, Noueiry A, et al. Identification of AP80978, a novel small-molecule inhibitor of hepatitis C virus replication that targets NS4B. Antimicrob Agents Chemother. 2014;58(6):3399–410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kakarla R, Liu J, Naduthambi D, Chang W, Mosley RT, Bao D, Steuer HM, Keilman M, Bansal S, Lam AM, et al. Discovery of a novel class of potent HCV NS4B inhibitors: SAR studies on piperazinone derivatives. J Med Chem. 2014;57(5):2136–60.

    Article  CAS  PubMed  Google Scholar 

  154. Esser-Nobis K, Romero-Brey I, Ganten TM, Gouttenoire J, Harak C, Klein R, Schemmer P, Binder M, Schnitzler P, Moradpour D, et al. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4B. Hepatology. 2013;57(3):953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Macdonald A, Harris M. Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol. 2004;85(Pt 9):2485–502.

    Article  CAS  PubMed  Google Scholar 

  156. Appel N, Zayas M, Miller S, Krijnse-Locker J, Schaller T, Friebe P, Kallis S, Engel U, Bartenschlager R. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 2008;4(3):e1000035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Tellinghuisen TL, Foss KL, Treadaway JC, Rice CM. Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J Virol. 2008;82(3):1073–83.

    Article  CAS  PubMed  Google Scholar 

  158. Manns M, Pol S, Jacobson IM, Marcellin P, Gordon SC, Peng CY, Chang TT, Everson GT, Heo J, Gerken G, et al. All-oral daclatasvir plus asunaprevir for hepatitis C virus genotype 1b: a multinational, phase 3, multicohort study. Lancet. 2014;384(9954):1597–605.

    Article  CAS  PubMed  Google Scholar 

  159. Sulkowski MS, Gardiner DF, Rodriguez-Torres M, Reddy KR, Hassanein T, Jacobson I, Lawitz E, Lok AS, Hinestrosa F, Thuluvath PJ, et al. Daclatasvir plus sofosbuvir for previously treated or untreated chronic HCV infection. N Engl J Med. 2014;370(3):211–21.

    Article  CAS  PubMed  Google Scholar 

  160. Gilead Sciences. Full prescribing information for Harvoni. 2014. http://www.gilead.com/~/media/Files/pdfs/medicines/liver-disease/harvoni/harvoni_pi.pdf.

  161. Gao M, Nettles RE, Belema M, Snyder LB, Nguyen VN, Fridell RA, Serrano-Wu MH, Langley DR, Sun JH, O’Boyle 2nd DR, et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature. 2010;465(7294):96–100.

    Article  CAS  PubMed  Google Scholar 

  162. Berger C, Romero-Brey I, Radujkovic D, Terreux R, Zayas M, Paul D, Harak C, Hoppe S, Gao M, Penin F, et al. Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology. 2014;147(5):1094–105. e1025.

    Article  CAS  PubMed  Google Scholar 

  163. Nakamoto S, Kanda T, Wu S, Shirasawa H, Yokosuka O. Hepatitis C virus NS5A inhibitors and drug resistance mutations. World J Gastroenterol. 2014;20(11):2902–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lawitz EJ, Gruener D, Hill JM, Marbury T, Moorehead L, Mathias A, Cheng G, Link JO, Wong KA, Mo H, et al. A phase 1, randomized, placebo-controlled, 3-day, dose-ranging study of GS-5885, an NS5A inhibitor, in patients with genotype 1 hepatitis C. J Hepatol. 2012;57(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  165. Wong KA, Worth A, Martin R, Svarovskaia E, Brainard DM, Lawitz E, Miller MD, Mo H. Characterization of hepatitis C virus resistance from a multiple-dose clinical trial of the novel NS5A inhibitor GS-5885. Antimicrob Agents Chemother. 2013;57(12):6333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Krishnan P, Beyer J, Mistry N, Koev G, Reisch T, DeGoey D, Kati W, Campbell A, Williams L, Xie W, et al. In vitro and in vivo antiviral activity and resistance profile of ombitasvir, an inhibitor of HCV NS5A. Antimicrob Agents Chemother. 2014;59:979–87.

    Article  PubMed  CAS  Google Scholar 

  167. DeGoey DA, Betebenner DA, Grampovnik DJ, Liu D, Pratt JK, Tufano MD, He W, Krishnan P, Pilot-Matias TJ, Marsh KC, et al. Discovery of pyrido[2,3-d]pyrimidine-based inhibitors of HCV NS5A. Bioorg Med Chem Lett. 2013;23(12):3627–30.

    Article  CAS  PubMed  Google Scholar 

  168. Vince B, Hill JM, Lawitz EJ, O’Riordan W, Webster LR, Gruener DM, Mofsen RS, Murillo A, Donovan E, Chen J, et al. A randomized, double-blind, multiple-dose study of the pan-genotypic NS5A inhibitor samatasvir in patients infected with hepatitis C virus genotype 1, 2, 3 or 4. J Hepatol. 2014;60(5):920–7.

    Article  CAS  PubMed  Google Scholar 

  169. Wang C, Jia L, O’Boyle DR, Sun JH, Rigat K, Valera L, Nower P, Huang X, Kienzle B, Roberts S, et al. Comparison of daclatasvir resistance barrier on NS5A from HCV genotypes 1-6: implications for cross-genotype activity. Antimicrob Agents Chemother. 2014;58:5155–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Wang C, Valera L, Jia L, Kirk MJ, Gao M, Fridell RA. In vitro activity of daclatasvir on hepatitis C virus genotype 3 NS5A. Antimicrob Agents Chemother. 2013;57(1):611–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang C, Jia L, Huang H, Qiu D, Valera L, Huang X, Sun JH, Nower PT, O’Boyle 2nd DR, Gao M, et al. In vitro activity of BMS-790052 on hepatitis C virus genotype 4 NS5A. Antimicrob Agents Chemother. 2012;56(3):1588–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Izumi N. Efficacy of daclatasvir in hepatitis C virus. Expert Rev Anti Infect Ther. 2014;12(9):1025–31.

    Article  CAS  PubMed  Google Scholar 

  173. Karino Y, Toyota J, Ikeda K, Suzuki F, Chayama K, Kawakami Y, Ishikawa H, Watanabe H, Hernandez D, Yu F, et al. Characterization of virologic escape in hepatitis C virus genotype 1b patients treated with the direct-acting antivirals daclatasvir and asunaprevir. J Hepatol. 2013;58(4):646–54.

    Article  CAS  PubMed  Google Scholar 

  174. Suzuki F, Sezaki H, Akuta N, Suzuki Y, Seko Y, Kawamura Y, Hosaka T, Kobayashi M, Saito S, Arase Y, et al. Prevalence of hepatitis C virus variants resistant to NS3 protease inhibitors or the NS5A inhibitor (BMS-790052) in hepatitis patients with genotype 1b. J Clin Virol. 2012;54(4):352–4.

    Article  CAS  PubMed  Google Scholar 

  175. Itakura J, Kurosaki M, Takada H, Nakakuki N, Matsuda S, Gondou K, Asano Y, Hattori N, Itakura Y, Tamaki N, et al. Naturally occurring, resistance-associated hepatitis C virus NS5A variants are linked to IL28B genotype and are sensitive to interferon-based therapy. Hepatol Res. 2015;45:E115–21.

    Article  CAS  PubMed  Google Scholar 

  176. Kuiken C, Yusim K, Boykin L, Richardson R. The Los Alamos hepatitis C sequence database. Bioinformatics. 2005;21(3):379–84.

    Article  CAS  PubMed  Google Scholar 

  177. McCormick AL, Wang L, Garcia-Diaz A, Macartney MJ, Webster DP, Haque T. Prevalence of baseline polymorphisms for potential resistance to NS5A inhibitors in drug-naive individuals infected with hepatitis C genotypes 1-4. Antivir Ther. 2014;20:81–5.

    Article  PubMed  CAS  Google Scholar 

  178. Murakami E, Niu C, Bao H, Micolochick Steuer HM, Whitaker T, Nachman T, Sofia MA, Wang P, Otto MJ, Furman PA. The mechanism of action of beta-D-2′-deoxy-2′-fluoro-2′-C-methylcytidine involves a second metabolic pathway leading to beta-D-2′-deoxy-2′-fluoro-2′-C-methyluridine 5′-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother. 2008;52(2):458–64.

    Article  CAS  PubMed  Google Scholar 

  179. Furman PA, Lam AM, Murakami E. Nucleoside analog inhibitors of hepatitis C viral replication: recent advances, challenges and trends. Future Med Chem. 2009;1(8):1429–52.

    Article  CAS  PubMed  Google Scholar 

  180. Tan CH, Jekle A, Kang H, Moy C, Deval J, Jin Z, Jiang M, Ardzinski A, Dyatkina N, Chanda SM, et al. Preclinical and in vitro resistance profile of potent nucleotide polymerase inhibitors of HCV: ALS-2200 and its single diastereomer, VX-135. Presented at the 8th international workshop on hepatitis C: resistance and new compounds. Boston, MA. 27–28 June 2013.

    Google Scholar 

  181. Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, et al. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem. 2003;278(49):49164–70.

    Article  CAS  PubMed  Google Scholar 

  182. Feng JY, Cheng G, Perry J, Barauskas O, Xu Y, Fenaux M, Eng S, Tirunagari N, Peng B, Yu M, et al. Inhibition of hepatitis C virus replication by GS-6620, a potent C-nucleoside monophosphate prodrug. Antimicrob Agents Chemother. 2014;58(4):1930–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Lam AM, Murakami E, Espiritu C, Steuer HM, Niu C, Keilman M, Bao H, Zennou V, Bourne N, Julander JG, et al. PSI-7851, a pronucleotide of beta-D-2′-deoxy-2′-fluoro-2′-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication. Antimicrob Agents Chemother. 2010;54(8):3187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Najera I. Resistance to HCV nucleoside analogue inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Curr Opin Virol. 2013;3(5):508–13.

    Article  CAS  PubMed  Google Scholar 

  185. Margeridon-Thermet S, Le Pogam S, Li L, Liu TF, Shulman N, Shafer RW, Najera I. Similar prevalence of low-abundance drug-resistant variants in treatment-naive patients with genotype 1a and 1b hepatitis C virus infections as determined by ultradeep pyrosequencing. PLoS One. 2014;9(8):e105569.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Ji H, Kozak RA, Biondi MJ, Pilon R, Vallee D, Liang BB, La D, Kim J, Van Domselaar G, Leonard L, et al. Next generation sequencing of the hepatitis C virus NS5B gene reveals potential novel S282 drug resistance mutations. Virology. 2015;477:1–9.

    Article  CAS  PubMed  Google Scholar 

  187. Maimone S, Tripodi G, Musolino C, Cacciola I, Pollicino T, Raimondo G. Lack of the NS5B S282T mutation in HCV isolates from liver tissue of treatment-naive patients with HCV genotype-1b infection. Antivir Ther. 2015;20(2):245–7.

    Article  CAS  PubMed  Google Scholar 

  188. Ali S, Leveque V, Le Pogam S, Ma H, Philipp F, Inocencio N, Smith M, Alker A, Kang H, Najera I, et al. Selected replicon variants with low-level in vitro resistance to the hepatitis C virus NS5B polymerase inhibitor PSI-6130 lack cross-resistance with R1479. Antimicrob Agents Chemother. 2008;52(12):4356–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pawlotsky JM. New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology. 2014;146(5):1176–92.

    Article  CAS  PubMed  Google Scholar 

  190. Olsen DB, Eldrup AB, Bartholomew L, Bhat B, Bosserman MR, Ceccacci A, Colwell LF, Fay JF, Flores OA, Getty KL, et al. A 7-deaza-adenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. Antimicrob Agents Chemother. 2004;48(10):3944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Carroll SS, Ludmerer S, Handt L, Koeplinger K, Zhang NR, Graham D, Davies ME, MacCoss M, Hazuda D, Olsen DB. Robust antiviral efficacy upon administration of a nucleoside analog to hepatitis C virus-infected chimpanzees. Antimicrob Agents Chemother. 2009;53(3):926–34.

    Article  CAS  PubMed  Google Scholar 

  192. Berke JM, Vijgen L, Lachau-Durand S, Powdrill MH, Rawe S, Sjuvarsson E, Eriksson S, Gotte M, Fransen E, Dehertogh P, et al. Antiviral activity and mode of action of TMC647078, a novel nucleoside inhibitor of the hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother. 2011;55(8):3812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ludmerer SW, Graham DJ, Boots E, Murray EM, Simcoe A, Markel EJ, Grobler JA, Flores OA, Olsen DB, Hazuda DJ, et al. Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay. Antimicrob Agents Chemother. 2005;49(5):2059–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Le Pogam S, Jiang WR, Leveque V, Rajyaguru S, Ma H, Kang H, Jiang S, Singer M, Ali S, Klumpp K, et al. In vitro selected Con1 subgenomic replicons resistant to 2′-C-methyl-cytidine or to R1479 show lack of cross resistance. Virology. 2006;351(2):349–59.

    Article  PubMed  CAS  Google Scholar 

  195. Dutartre H, Bussetta C, Boretto J, Canard B. General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2′-modified nucleotide analogues. Antimicrob Agents Chemother. 2006;50(12):4161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cretton-Scott E, Perigaud C, Peyrottes S, Licklider L, Camire M, Larsson M, Colla ML, Hildebrand E, Lallos L, Bilello J, et al. In vitro antiviral activity and pharmacology of IDX184, a novel and potent inhibitor of HCV replication. Presented at the 43rd annual meeting of the European Association for the Study of Liver, Milan, Italy. 23–27 April 2008.

    Google Scholar 

  197. Chang W, Bao D, Chun BK, Naduthambi D, Nagarathnam D, Rachakonda S, Reddy PG, Ross BS, Zhang HR, Bansal S, et al. Discovery of PSI-353661, a novel purine nucleotide prodrug for the treatment of HCV infection. ACS Med Chem Lett. 2011;2(2):130–5.

    Article  CAS  PubMed  Google Scholar 

  198. Vernachio JH, Bleiman B, Bryant KD, Chamberlain S, Hunley D, Hutchins J, Ames B, Gorovits E, Ganguly B, Hall A, et al. INX-08189, a phosphoramidate prodrug of 6-O-methyl-2′-C-methyl guanosine, is a potent inhibitor of hepatitis C virus replication with excellent pharmacokinetic and pharmacodynamic properties. Antimicrob Agents Chemother. 2011;55(5):1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bilello JP, Dousson CB, Pierra C, Surleraux D, LaColla M, Chapron C, Serra I, Golitsina N, Danehy F, Camire M, et al. The pharmacologic properties of IDX19368, a novel nucleotide prodrug, highlight its potential for use in a low-dose DAA regimen for HCV. Presented at the 19th international symposium on heptatits C virus and related viruses. Venice, Italy. 5–9 Oct 2012.

    Google Scholar 

  200. Du J, Bao D, Chun BK, Jiang Y, Reddy PG, Zhang HR, Ross BS, Bansal S, Bao H, Espiritu C, et al. beta-D-2′-alpha-F-2′-beta-C-Methyl-6-O-substituted 3′,5′-cyclic phosphate nucleotide prodrugs as inhibitors of hepatitis C virus replication: a structure-activity relationship study. Bioorg Med Chem Lett. 2012;22(18):5924–9.

    Article  CAS  PubMed  Google Scholar 

  201. Lalezari J, Asmuth D, Casiro A, Vargas H, Lawrence S, Dubuc-Patrick G, Chen J, McCarville J, Pietropaolo K, Zhou XJ, et al. Short-term monotherapy with IDX184, a liver-targeted nucleotide polymerase inhibitor, in patients with chronic hepatitis C virus infection. Antimicrob Agents Chemother. 2012;56(12):6372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lalezari J, Box T, O’Riordan W, Mehra P, Nguyen T, Poordad F, Dejesus E, Kwo P, Godofsky E, Lawrence S, et al. IDX184 in combination with pegylated interferon-alpha2a and ribavirin for 2 weeks in treatment-naive patients with chronic hepatitis C. Antivir Ther. 2013;18(6):755–64.

    Article  CAS  PubMed  Google Scholar 

  203. Gupta K, Seifer M, Serra I, Rashidzadeh H, Luo S, Colla ML, Pan-Zhou X-R, Chapron C, Hernandez-Santiago B, Parsy C, et al. Favorable preclinical profile of IDX21437, a novel uridine nucleotide prodrug, for use in a direct-acting antiviral (DAA) regimen for HCV. Presented at the 49th annual meeting of the European Association for the Study of the Liver (EASL). London, UK. 9–13 April 2014.

    Google Scholar 

  204. Yang W, Wiles J, Patel D, Podos S, Fabrycki J, Zhao Y, Jia L, Yang G, Rivera J, Elliot M, et al. Preclinical characteristics of ACH-3422: a potent uridine nucleotide prodrug for inhibition of hepatitis C virus NS5B RNA polymerase. Presented at the 64th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Washington, D.C. 1–5 Nov 2013.

    Google Scholar 

  205. Tan H, Shaw K, Jekle A, Deval J, Jin Z, Fung A, Tam Y, Blatt L, Chanda S, Wang G, et al. Preclinical characterization of AL-516, a potent guanosine based nucleoside polymerase inhibitor for the treatment of chronic hepatitis C. Presented at the 65th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Boston, MA. 7–11 November 2014.

    Google Scholar 

  206. Lam AM, Espiritu C, Murakami E, Zennou V, Bansal S, Micolochick Steuer HM, Niu C, Keilman M, Bao H, Bourne N, et al. Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of beta-D-2′-deoxy-2′-alpha-fluoro-2′-beta-C-methylguanosine. Antimicrob Agents Chemother. 2011;55(6):2566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lam AM, Espiritu C, Bansal S, Micolochick Steuer HM, Zennou V, Otto MJ, Furman PA. Hepatitis C virus nucleotide inhibitors PSI-352938 and PSI-353661 exhibit a novel mechanism of resistance requiring multiple mutations within replicon RNA. J Virol. 2011;85(23):12334–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Le Pogam S, Seshaadri A, Ewing A, Kang H, Kosaka A, Yan JM, Berrey M, Symonds B, De La Rosa A, Cammack N, et al. RG7128 alone or in combination with pegylated interferon-alpha2a and ribavirin prevents hepatitis C virus (HCV) Replication and selection of resistant variants in HCV-infected patients. J Infect Dis. 2010;202(10):1510–9.

    Article  PubMed  CAS  Google Scholar 

  209. Pawlotsky JM, Najera I, Jacobson I. Resistance to mericitabine, a nucleoside analogue inhibitor of HCV RNA-dependent RNA polymerase. Antivir Ther. 2012;17(3):411–23.

    Article  CAS  PubMed  Google Scholar 

  210. Popa S, Berliba A, Ghicavii N, Patat A, Kauffman RS, Krop J, Garg V, Tong M, Chanda SM, Zhang Q, et al. VX-135, a once-daily nucleotide HCV polymerase inhibitor, was well tolerated and demonstrated potent antiviral activity when given with ribavirin in treatment-naïve patients with genotype 1 HCV. Presented at the 64th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Washington, D.C. 1–5 Nov 2013.

    Google Scholar 

  211. Svarovskaia ES, Dvory-Sobol SH, Hebner C, Doehle B, Gontcharova V, Martin R, Gane EJ, Jacobson IM, Nelson DR, Lawitz E, et al. No resistance detected in four phase 3 clinical studies in HCV genotypes 1-6 of sufosbuvir + ribavirin with or without peginterferon. Presented at the 64th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Washington DC. 1–4 Nov 2013.

    Google Scholar 

  212. Molina JM, Orkin C, Iser DM, Zamora FX, Nelson M, Stephan C, Massetto B, Gaggar A, Ni L, Svarovskaia E, et al. Sofosbuvir plus ribavirin for treatment of hepatitis C virus in patients co-infected with HIV (PHOTON-2): a multicentre, open-label, non-randomised, phase 3 study. Lancet. 2015;385(9973):1098–106.

    Article  CAS  PubMed  Google Scholar 

  213. Brown NA. Progress towards improving antiviral therapy for hepatitis C with hepatitis C virus polymerase inhibitors. Part I: nucleoside analogues. Expert Opin Investig Drugs. 2009;18(6):709–25.

    Article  CAS  PubMed  Google Scholar 

  214. Tong X, Li L, Haines K, Najera I. Identification of the NS5B S282T resistant variant and two novel amino acid substitutions that affect replication capacity in hepatitis C virus-infected patients treated with mericitabine and danoprevir. Antimicrob Agents Chemother. 2014;58(6):3105–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Tong X, Piso K, Haines K, Baronas V, Li L, Yan J-M, LePogam S, Kulkarni R, Thommes J, Klumpp K, et al. Lack of mercitibine resistance mutation NS5B S282T and detection and characterization of a novel mercitibine double resistance mutation NS5B L159F + L320F in patients treated with mercitibine plus peginterferon alfa-2a (40KD)/ribavirin provides further evidence for the high resistance barrier to mercitabine. Presented at the 65th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Boston, Massachusetts, USA. 9–13 Nov 2012.

    Google Scholar 

  216. Tong X, Le Pogam S, Li L, Haines K, Piso K, Baronas V, Yan JM, So SS, Klumpp K, Najera I. In vivo emergence of a novel mutant L159F/L320F in the NS5B polymerase confers low-level resistance to the HCV polymerase inhibitors mericitabine and sofosbuvir. J Infect Dis. 2014;209(5):668–75.

    Article  CAS  PubMed  Google Scholar 

  217. Hedskog C, Gontcharova V, Han B, Martin R, Miller MD, Mo H, Svarovskaia ES. Evolution of the HCV viral population from the one patient with S282T detected at relapse after sufosbuvir monotherapy. Presented at the international workshop on HIV and hepatitis virus drug resistance and curative strategies. Toronto, Canada. 4–8 June 2013.

    Google Scholar 

  218. Lawitz E, Poordad FF, Pang PS, Hyland RH, Ding X, Mo H, Symonds WT, McHutchison JG, Membreno FE. Sofosbuvir and Ledipasvir fixed-dose combination with and without ribavirin in treatment-naïve and previously treated patients with genotype 1 hepatitis C: the LONESTAR study. Presented at the 64th annual meeting of the American Association for the Study of Liver Diseases (AASLD). Washington, D.C. 1–5 Nov 2013.

    Google Scholar 

  219. Schneider MD, Sarrazin C. Antiviral therapy of hepatitis C in 2014: do we need resistance testing? Antiviral Res. 2014;105:64–71.

    Article  CAS  PubMed  Google Scholar 

  220. Donaldson EF, Harrington PR, O’Rear JJ, Naeger LK. Clinical evidence and bioinformatics characterization of potential hepatitis C virus resistance pathways for sofosbuvir. Hepatology. 2015;61(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  221. Gane E, Stedman C, Garg V, George S, Kieffer T, Krop J, Lan L, Rubin R, Lawal A. An interferon- and ribavirin-free 12-week tegimen of once-daily VX-135 and daclatasvir in treatment-naïve patients with genotype 1 HCV infection. Presented at the 49th annual meeting of the European Association for the Study of the Liver (EASL). London, UK. 9–13 April 2014.

    Google Scholar 

  222. Tigges A, Zhang E, Davis A, Spanks J, Dorrian J, Symons J, Bartels D, Fry J, Keiffer T. The S282T variant is not observed in treatment-naïve patients with genotype 1 HCV infection treated with the nucleotide inhibitor VX-135 in combination with ribavirin. Presented at the 49th annual meeting of the European Association for the Study of the Liver (EASL). London, UK. 9–13 April 2014.

    Google Scholar 

  223. Le Pogam S, Seshaadri A, Kosaka A, Chiu S, Kang H, Hu S, Rajyaguru S, Symons J, Cammack N, Najera I. Existence of hepatitis C virus NS5B variants naturally resistant to non-nucleoside, but not to nucleoside, polymerase inhibitors among untreated patients. J Antimicrob Chemother. 2008;61(6):1205–16.

    Article  PubMed  CAS  Google Scholar 

  224. Franco S, Casadella M, Noguera-Julian M, Clotet B, Tural C, Paredes R, Martinez MA. No detection of the NS5B S282T mutation in treatment-naive genotype 1 HCV/HIV-1 coinfected patients using deep sequencing. J Clin Virol. 2013;58(4):726–9.

    Article  CAS  PubMed  Google Scholar 

  225. Feld JJ. Interferon-free strategies with a nucleoside/nucleotide analogue. Semin Liver Dis. 2014;34(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  226. Sarisky RT. Non-nucleoside inhibitors of the HCV polymerase. J Antimicrob Chemother. 2004;54(1):14–6.

    Article  CAS  PubMed  Google Scholar 

  227. Beaulieu PL, Bos M, Cordingley MG, Chabot C, Fazal G, Garneau M, Gillard JR, Jolicoeur E, LaPlante S, McKercher G, et al. Discovery of the first thumb pocket 1 NS5B polymerase inhibitor (BILB 1941) with demonstrated antiviral activity in patients chronically infected with genotype 1 hepatitis C virus (HCV). J Med Chem. 2012;55(17):7650–66.

    Article  CAS  PubMed  Google Scholar 

  228. Tomei L, Altamura S, Bartholomew L, Biroccio A, Ceccacci A, Pacini L, Narjes F, Gennari N, Bisbocci M, Incitti I, et al. Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Virol. 2003;77(24):13225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hirashima S, Suzuki T, Ishida T, Noji S, Yata S, Ando I, Komatsu M, Ikeda S, Hashimoto H. Benzimidazole derivatives bearing substituted biphenyls as hepatitis C virus NS5B RNA-dependent RNA polymerase inhibitors: structure-activity relationship studies and identification of a potent and highly selective inhibitor JTK-109. J Med Chem. 2006;49(15):4721–36.

    Article  CAS  PubMed  Google Scholar 

  230. Delang L, Froeyen M, Herdewijn P, Neyts J. Identification of a novel resistance mutation for benzimidazole inhibitors of the HCV RNA-dependent RNA polymerase. Antiviral Res. 2012;93(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  231. Han D, Strommen K, Anton ED, Choe S, Chen M, Hazuda DJ, Petropoulos CJ, Barnard RJO, Reeves JD. Genotypic and phenotypic characterizations of natural and acquired reductions in susceptibility to the non-nucleoside inhibitor MK-3281. Presented at the 6th international workshop hepatitis C—resistance and new compound. Cambridge, MA. 23–24 June 2011.

    Google Scholar 

  232. Devogelaere B, Berke JM, Vijgen L, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Nyanguile O, Tahri A, Amssoms K, et al. TMC647055, a potent nonnucleoside hepatitis C virus NS5B polymerase inhibitor with cross-genotypic coverage. Antimicrob Agents Chemother. 2012;56(9):4676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, et al. Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem. 2014;57(5):1880–92.

    Article  CAS  PubMed  Google Scholar 

  234. Rigat KL, Lu H, Wang YK, Argyrou A, Fanslau C, Beno B, Wang Y, Marcinkeviciene J, Ding M, Gentles RG, et al. Mechanism of inhibition for BMS-791325, a novel non-nucleoside inhibitor of hepatitis C virus NS5B polymerase. J Biol Chem. 2014;289(48):33456–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Liu M, Tuttle M, Gao M, Lemm JA. Potency and resistance analysis of hepatitis C virus NS5B polymerase inhibitor BMS-791325 on all major genotypes. Antimicrob Agents Chemother. 2014;58(12):7416–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Tatum H, Thuluvath PJ, Lawitz E, Martorell C, DeMicco M, Cohen S, Rustgi V, Ravendhran N, Ghalib R, Hanson J, et al. A randomized, placebo-controlled study of the NS5B inhibitor beclabuvir with peginterferon/ribavirin for HCV genotype 1. J Viral Hepat. 2014;22:658–64.

    Article  PubMed  CAS  Google Scholar 

  237. Shi ST, Herlihy KJ, Graham JP, Fuhrman SA, Doan C, Parge H, Hickey M, Gao J, Yu X, Chau F, et al. In vitro resistance study of AG-021541, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother. 2008;52(2):675–83.

    Article  CAS  PubMed  Google Scholar 

  238. Wang H, Guo C, Chen BZ, Ji M. Computational study on the drug resistance mechanism of HCV NS5B RNA-dependent RNA polymerase mutants V494I, V494A, M426A, and M423T to Filibuvir. Antiviral Res. 2015;113:79–92.

    Article  PubMed  CAS  Google Scholar 

  239. Howe AY, Cheng H, Thompson I, Chunduru SK, Herrmann S, O’Connell J, Agarwal A, Chopra R, Del Vecchio AM. Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor. Antimicrob Agents Chemother. 2006;50(12):4103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. May MM, Brohm D, Harrenga A, Marquardt T, Riedl B, Kreuter J, Zimmermann H, Ruebsamen-Schaeff H, Urban A. Discovery of substituted N-phenylbenzenesulphonamides as a novel class of non-nucleoside hepatitis C virus polymerase inhibitors. Antiviral Res. 2012;95(2):182–91.

    Article  CAS  PubMed  Google Scholar 

  241. Cooper C, Lawitz EJ, Ghali P, Rodriguez-Torres M, Anderson FH, Lee SS, Bedard J, Chauret N, Thibert R, Boivin I, et al. Evaluation of VCH-759 monotherapy in hepatitis C infection. J Hepatol. 2009;51(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  242. Fenaux M, Eng S, Leavitt SA, Lee YJ, Mabery EM, Tian Y, Byun D, Canales E, Clarke MO, Doerffler E, et al. Preclinical characterization of GS-9669, a thumb site II inhibitor of the hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother. 2013;57(2):804–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gentile I, Buonomo AR, Zappulo E, Coppola N, Borgia G. GS-9669: a novel non-nucleoside inhibitor of viral polymerase for the treatment of hepatitis C virus infection. Expert Rev Anti Infect Ther. 2014;12(10):1179–86.

    Article  CAS  PubMed  Google Scholar 

  244. Lazerwith SE, Lew W, Zhang J, Morganelli P, Liu Q, Canales E, Clarke MO, Doerffler E, Byun D, Mertzman M, et al. Discovery of GS-9669, a thumb site II non-nucleoside inhibitor of NS5B for the treatment of genotype 1 chronic hepatitis C infection. J Med Chem. 2014;57(5):1893–901.

    Article  CAS  PubMed  Google Scholar 

  245. Biswal BK, Wang M, Cherney MM, Chan L, Yannopoulos CG, Bilimoria D, Bedard J, James MN. Non-nucleoside inhibitors binding to hepatitis C virus NS5B polymerase reveal a novel mechanism of inhibition. J Mol Biol. 2006;361(1):33–45.

    Article  CAS  PubMed  Google Scholar 

  246. Xue W, Jiao P, Liu H, Yao X. Molecular modeling and residue interaction network studies on the mechanism of binding and resistance of the HCV NS5B polymerase mutants to VX-222 and ANA598. Antiviral Res. 2014;104:40–51.

    Article  CAS  PubMed  Google Scholar 

  247. Kati W, Koev G, Irvin M, Beyer J, Liu Y, Krishnan P, Reisch T, Mondal R, Wagner R, Molla A, et al. In vitro activity and resistance profile of dasabuvir, a nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother. 2015;59(3):1505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Nguyen TT, Gates AT, Gutshall LL, Johnston VK, Gu B, Duffy KJ, Sarisky RT. Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob Agents Chemother. 2003;47(11):3525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Tomei L, Altamura S, Bartholomew L, Bisbocci M, Bailey C, Bosserman M, Cellucci A, Forte E, Incitti I, Orsatti L, et al. Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J Virol. 2004;78(2):938–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Lu L, Mo H, Pilot-Matias TJ, Molla A. Evolution of resistant M414T mutants among hepatitis C virus replicon cells treated with polymerase inhibitor A-782759. Antimicrob Agents Chemother. 2007;51(6):1889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Mo H, Lu L, Pilot-Matias T, Pithawalla R, Mondal R, Masse S, Dekhtyar T, Ng T, Koev G, Stoll V, et al. Mutations conferring resistance to a hepatitis C virus (HCV) RNA-dependent RNA polymerase inhibitor alone or in combination with an HCV serine protease inhibitor in vitro. Antimicrob Agents Chemother. 2005;49(10):4305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Trivella JP, Gutierrez J, Martin P. Dasabuvir: a new direct antiviral agent for the treatment of hepatitis C. Expert Opin Pharmacother. 2015;16(4):617–24.

    Article  CAS  PubMed  Google Scholar 

  253. Lu L, Dekhtyar T, Masse S, Pithawalla R, Krishnan P, He W, Ng T, Koev G, Stewart K, Larson D, et al. Identification and characterization of mutations conferring resistance to an HCV RNA-dependent RNA polymerase inhibitor in vitro. Antiviral Res. 2007;76(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  254. Thompson PA, Patel RA, Showalter RE, Li C, Appleman JR, Steffy KR. In vitro studies demonstrate that combinations of antiviral agents that include HCV polymerase inhibitor ANA598 have the potential to overcome viral resistance. Presented at the 59th annual meeting of the American Association for the Study of Liver Diseases (AASLD). San Francisco, CA. 31 October–1 November 2008.

    Google Scholar 

  255. Bilello JP, Colla ML, Serra I, Gillum JM, Soubasakos MA, Chapron C, Li B, Bonin A, Panzo RJ, Seifer M, et al. Enhanced antiviral activity of IDX375, a novel non-nucleoside inhibitor, in combination with other HCV antiviral agents in the genotype 1b replicon in vitro. Presented at the 16th international symposium on hepatitis C virus and related viruses. Nice, France. 3–7 October 2009.

    Google Scholar 

  256. Ando I, Ogura N, Toyonaga Y, Hirahara K, Shibata T, Noguchi T. JTK-853, a novel non-nucleoside hepatitis C virus polymerase inhibitor, demonstrates a high genetic barrier to resistance in vitro. Intervirology. 2013;56(5):302–9.

    CAS  PubMed  Google Scholar 

  257. Howe AY, Cheng H, Johann S, Mullen S, Chunduru SK, Young DC, Bard J, Chopra R, Krishnamurthy G, Mansour T, et al. Molecular mechanism of hepatitis C virus replicon variants with reduced susceptibility to a benzofuran inhibitor, HCV-796. Antimicrob Agents Chemother. 2008;52(9):3327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Voitenleitner C, Crosby R, Walker J, Remlinger K, Vamathevan J, Wang A, You S, Johnson III J, Woldu E, Van Horn S, et al. In vitro characterization of GSK2485852, a novel hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother. 2013;57(11):5216–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Maynard A, Crosby RM, Ellis B, Hamatake R, Hong Z, Johns BA, Kahler KM, Koble C, Leivers A, Leivers MR, et al. Discovery of a potent boronic acid derived inhibitor of the HCV RNA-dependent RNA polymerase. J Med Chem. 2014;57(5):1902–13.

    Article  CAS  PubMed  Google Scholar 

  260. McCown MF, Rajyaguru S, Kular S, Cammack N, Najera I. GT-1a or GT-1b subtype-specific resistance profiles for hepatitis C virus inhibitors telaprevir and HCV-796. Antimicrob Agents Chemother. 2009;53(5):2129–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Shih IH, Vliegen I, Peng B, Yang H, Hebner C, Paeshuyse J, Purstinger G, Fenaux M, Tian Y, Mabery E, et al. Mechanistic characterization of GS-9190 (Tegobuvir), a novel nonnucleoside inhibitor of hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother. 2011;55(9):4196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Hebner CM, Han B, Brendza KM, Nash M, Sulfab M, Tian Y, Hung M, Fung W, Vivian RW, Trenkle J, et al. The HCV non-nucleoside inhibitor Tegobuvir utilizes a novel mechanism of action to inhibit NS5B polymerase function. PLoS One. 2012;7(6):e39163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Wong KA, Xu S, Martin R, Miller MD, Mo H. Tegobuvir (GS-9190) potency against HCV chimeric replicons derived from consensus NS5B sequences from genotypes 2b, 3a, 4a, 5a, and 6a. Virology. 2012;429(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  264. Stansfield I, Avolio S, Colarusso S, Gennari N, Narjes F, Pacini B, Ponzi S, Harper S. Active site inhibitors of HCV NS5B polymerase. The development and pharmacophore of 2-thienyl-5,6-dihydroxypyrimidine-4-carboxylic acid. Bioorg Med Chem Lett. 2004;14(20):5085–8.

    Article  CAS  PubMed  Google Scholar 

  265. Summa V, Petrocchi A, Matassa VG, Taliani M, Laufer R, De Francesco R, Altamura S, Pace P. HCV NS5b RNA-dependent RNA polymerase inhibitors: from alpha, gamma-diketoacids to 4,5-dihydroxypyrimidine- or 3-methyl-5-hydroxypyrimidinonecarboxylic acids. Design and synthesis. J Med Chem. 2004;47(22):5336–9.

    Article  CAS  PubMed  Google Scholar 

  266. Koch U, Attenni B, Malancona S, Colarusso S, Conte I, Di Filippo M, Harper S, Pacini B, Giomini C, Thomas S, et al. 2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: discovery, SAR, modeling, and mutagenesis. J Med Chem. 2006;49(5):1693–705.

    Article  CAS  PubMed  Google Scholar 

  267. Pacini B, Avolio S, Ercolani C, Koch U, Migliaccio G, Narjes F, Pacini L, Tomei L, Harper S. 2-(3-Thienyl)-5,6-dihydroxypyrimidine-4-carboxylic acids as inhibitors of HCV NS5B RdRp. Bioorg Med Chem Lett. 2009;19(21):6245–9.

    Article  CAS  PubMed  Google Scholar 

  268. Powdrill MH, Deval J, Narjes F, De Francesco R, Gotte M. Mechanism of hepatitis C virus RNA polymerase inhibition with dihydroxypyrimidines. Antimicrob Agents Chemother. 2010;54(3):977–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Bilello Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Heinrich, B., Bilello, J.P. (2017). HCV Drug Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_39

Download citation

Publish with us

Policies and ethics