Skip to main content

Resistance to Linezolid

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Linezolid is an antimicrobial agent that binds to the bacterial ribosome and thereby inhibits protein synthesis. Soon after its release as a clinical drug, it became clear that bacteria could become resistant to linezolid. The resistance mechanisms are mainly causing alteration of the drug target site, but probably efflux might also play a role. The resistance is still rare in surveillance studies, but outbreaks of resistant clones from hospitals have been observed. So far the main mechanisms of resistance are occurrence of mutations in ribosomal genes or obtaining plasmids with a gene coding for a methyltransferase providing resistance. The most obvious way to avoid resistance may be development of derivatives of linezolid overcoming the known resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukhtar TA, Wright GD. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev. 2005;105(2):529–42. doi:10.1021/cr030110z.

    Article  CAS  PubMed  Google Scholar 

  2. Shaw KJ, Barbachyn MR. The oxazolidinones: past, present, and future. Ann N Y Acad Sci. 2011;1241:48–70. doi:10.1111/j.1749-6632.2011.06330.x.

    Article  CAS  PubMed  Google Scholar 

  3. Long KS, Vester B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother. 2012;56(2):603–12. doi:10.1128/aac.05702-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shinabarger D, Eliopoulos G. Resistance to linezolid. In: Mayers D, editor. Antimicrobial drug resistance. Infectious disease. Totowa: Humana Press; 2009. p. 247–57. doi:10.1007/978-1-59745-180-2_22.

    Chapter  Google Scholar 

  5. Fugitt RB, Luckenbaugh RW. Bactericide, fungicide, plant diseases. Google Patents; 1978.

    Google Scholar 

  6. Slee AM, Wuonola MA, McRipley RJ, Zajac I, Zawada MJ, Bartholomew PT, Gregory WA, Forbes M. Oxazolidinones, a new class of synthetic antibacterial agents: in vitro and in vivo activities of DuP 105 and DuP 721. Antimicrob Agents Chemother. 1987;31(11):1791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brickner SJ, Barbachyn MR, Hutchinson DK, Manninen PR. Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious Gram-positive infections. J Med Chem. 2008;51(7):1981–90. doi:10.1021/jm800038g.

    Article  CAS  PubMed  Google Scholar 

  8. Muller-Serieys C. Ketolides and oxazolidinones. Mechanisms of action and antibacterial spectrum. Presse Medicale (Paris, France: 1983). 2000;29(37):2061–4.

    CAS  Google Scholar 

  9. Abb J. In vitro activity of linezolid, quinupristin-dalfopristin, vancomycin, teicoplanin, moxifloxacin and mupirocin against methicillin-resistant Staphylococcus aureus: comparative evaluation by the E-test and a broth microdilution method. Diagn Microbiol Infect Dis. 2002;43(4):319–21. doi:S0732889302004078 [pii].

    Article  CAS  PubMed  Google Scholar 

  10. Norrby R. Linezolid—a review of the first oxazolidinone. Expert Opin Pharmacother. 2001;2(2):293–302. doi:10.1517/14656566.2.2.293.

    Article  CAS  PubMed  Google Scholar 

  11. Behra-Miellet J, Calvet L, Dubreuil L. Activity of linezolid against anaerobic bacteria. Int J Antimicrob Agents. 2003;22(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  12. Sotgiu G, Centis R, D’Ambrosio L, Alffenaar JW, Anger HA, Caminero JA, Castiglia P, De Lorenzo S, Ferrara G, Koh WJ, Schecter GF, Shim TS, Singla R, Skrahina A, Spanevello A, Udwadia ZF, Villar M, Zampogna E, Zellweger JP, Zumla A, Migliori GB. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42. doi:10.1183/09031936.00022912.

    Article  CAS  PubMed  Google Scholar 

  13. Paladino JA. Linezolid: an oxazolidinone antimicrobial agent. Am J Health Syst Pharm. 2002;59(24):2413–25.

    CAS  PubMed  Google Scholar 

  14. Zurenko GE, Yagi BH, Schaadt RD, Allison JW, Kilburn JO, Glickman SE, Hutchinson DK, Barbachyn MR, Brickner SJ. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob Agents Chemother. 1996;40(4):839–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsiodras S, Gold HS, Sakoulas G, Eliopoulos GM, Wennersten C, Venkataraman L, Moellering RC, Ferraro MJ. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Lancet. 2001;358(9277):207–8. doi:10.1016/S0140-6736(01)05410-1. S0140-6736(01)05410-1 [pii].

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez Garcia M, De la Torre MA, Morales G, Pelaez B, Tolon MJ, Domingo S, Candel FJ, Andrade R, Arribi A, Garcia N, Martinez Sagasti F, Fereres J, Picazo J. Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA. 2010;303(22):2260–4. doi:10.1001/jama.2010.757. 303/22/2260 [pii].

    Article  CAS  PubMed  Google Scholar 

  17. Fortuna CG, Bonaccorso C, Bulbarelli A, Caltabiano G, Rizzi L, Goracci L, Musumarra G, Pace A, Palumbo Piccionello A, Guarcello A, Pierro P, Cocuzza CE, Musumeci R. New linezolid-like 1,2,4-oxadiazoles active against Gram-positive multiresistant pathogens. Eur J Med Chem. 2013;65:533–45. doi:10.1016/j.ejmech.2013.03.069.

    Article  CAS  PubMed  Google Scholar 

  18. Kisgen JJ, Mansour H, Unger NR, Childs LM. Tedizolid: a new oxazolidinone antimicrobial. Am J Health Syst Pharm. 2014;71(8):621–33. doi:10.2146/ajhp130482.

    Article  CAS  PubMed  Google Scholar 

  19. Moellering RC. Tedizolid: a novel oxazolidinone for gram-positive infections. Clin Infect Dis. 2014;58 Suppl 1:S1–3. doi:10.1093/cid/cit658.

    Article  PubMed  Google Scholar 

  20. Schaadt R, Sweeney D, Shinabarger D, Zurenko G. In vitro activity of TR-700, the active ingredient of the antibacterial prodrug TR-701, a novel oxazolidinone antibacterial agent. Antimicrob Agents Chemother. 2009;53(8):3236–9. doi:10.1128/AAC.00228-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Locke JB, Rahawi S, Lamarre J, Mankin AS, Shaw KJ. Genetic environment and stability of cfr in methicillin-resistant Staphylococcus aureus CM05. Antimicrob Agents Chemother. 2012;56(1):332–40. doi:10.1128/aac.05420-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Prokocimer P, Bien P, Surber J, Mehra P, DeAnda C, Bulitta JB, Corey GR. Phase 2, randomized, double-blind, dose-ranging study evaluating the safety, tolerability, population pharmacokinetics, and efficacy of oral torezolid phosphate in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother. 2011;55(2):583–92. doi:10.1128/aac.00076-10.

    Article  CAS  PubMed  Google Scholar 

  23. Flanagan S, Bartizal K, Minassian SL, Fang E, Prokocimer P. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother. 2013;57(7):3060–6. doi:10.1128/aac.00431-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sutcliffe JA. Antibiotics in development targeting protein synthesis. Ann N Y Acad Sci. 2011;1241:122–52. doi:10.1111/j.1749-6632.2011.06323.x.

    Article  CAS  PubMed  Google Scholar 

  25. Bassetti M, Merelli M, Temperoni C, Astilean A. New antibiotics for bad bugs: where are we? Ann Clin Microbiol Antimicrob. 2013;12:22. doi:10.1186/1476-0711-12-22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T, Silvia A, Gobey J, Ellery C, Zhang Y, Eisenach K, Miller P, Diacon AH. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One. 2014;9(4), e94462. doi:10.1371/journal.pone.0094462.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eustice DC, Feldman PA, Slee AM. The mechanism of action of DuP 721, a new antibacterial agent: effects on macromolecular synthesis. Biochem Biophys Res Commun. 1988;150(3):965–71.

    Article  CAS  PubMed  Google Scholar 

  28. Shinabarger DL, Marotti KR, Murray RW, Lin AH, Melchior EP, Swaney SM, Dunyak DS, Demyan WF, Buysse JM. Mechanism of action of oxazolidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob Agents Chemother. 1997;41(10):2132–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Swaney SM, Aoki H, Ganoza MC, Shinabarger DL. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother. 1998;42(12):3251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson J, O’Connor M, Mills JA, Dahlberg AE. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J Mol Biol. 2002;322(2):273–9.

    Article  CAS  PubMed  Google Scholar 

  31. Aoki H, Ke L, Poppe SM, Poel TJ, Weaver EA, Gadwood RC, Thomas RC, Shinabarger DL, Ganoza MC. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Antimicrob Agents Chemother. 2002;46(4):1080–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kloss P, Xiong L, Shinabarger DL, Mankin AS. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J Mol Biol. 1999;294(1):93–101. doi:10.1006/jmbi.1999.3247.

    Article  CAS  PubMed  Google Scholar 

  33. Colca JR, McDonald WG, Waldon DJ, Thomasco LM, Gadwood RC, Lund ET, Cavey GS, Mathews WR, Adams LD, Cecil ET, Pearson JD, Bock JH, Mott JE, Shinabarger DL, Xiong L, Mankin AS. Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. J Biol Chem. 2003;278(24):21972–9. doi:10.1074/jbc.M302109200. M302109200 [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Leach KL, Swaney SM, Colca JR, McDonald WG, Blinn JR, Thomasco LM, Gadwood RC, Shinabarger D, Xiong L, Mankin AS. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell. 2007;26(3):393–402. doi:10.1016/j.molcel.2007.04.005. S1097-2765(07)00221-3 [pii].

    Article  CAS  PubMed  Google Scholar 

  35. Ippolito JA, Kanyo ZF, Wang D, Franceschi FJ, Moore PB, Steitz TA, Duffy EM. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J Med Chem. 2008;51(12):3353–6. doi:10.1021/jm800379d.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci U S A. 2008;105(36):13339–44. doi:10.1073/pnas.0804276105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kokkori S, Apostolidi M, Tsakris A, Pournaras S, Stathopoulos C, Dinos G. Linezolid-dependent function and structure adaptation of ribosomes in a Staphylococcus epidermidis strain exhibiting linezolid dependence. Antimicrob Agents Chemother. 2014;58(8):4651–6. doi:10.1128/aac.02835-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sander P, Belova L, Kidan YG, Pfister P, Mankin AS, Bottger EC. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Mol Microbiol. 2002;46(5):1295–304.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet. 2001;357(9263):1179. doi:10.1016/s0140-6736(00)04376-2.

    Article  CAS  PubMed  Google Scholar 

  40. Marshall SH, Donskey CJ, Hutton-Thomas R, Salata RA, Rice LB. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob Agents Chemother. 2002;46(10):3334–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meka VG, Pillai SK, Sakoulas G, Wennersten C, Venkataraman L, DeGirolami PC, Eliopoulos GM, Moellering Jr RC, Gold HS. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J Infect Dis. 2004;190(2):311–7. doi:10.1086/421471.

    Article  CAS  PubMed  Google Scholar 

  42. Mazzariol A, Lo Cascio G, Kocsis E, Maccacaro L, Fontana R, Cornaglia G. Outbreak of linezolid-resistant Staphylococcus haemolyticus in an Italian intensive care unit. Eur J Clin Microbiol. 2012;31(4):523–7. doi:10.1007/s10096-011-1343-6.

    Article  CAS  Google Scholar 

  43. Feng J, Lupien A, Gingras H, Wasserscheid J, Dewar K, Legare D, Ouellette M. Genome sequencing of linezolid-resistant Streptococcus pneumoniae mutants reveals novel mechanisms of resistance. Genome Res. 2009;19(7):1214–23. doi:10.1101/gr.089342.108. gr.089342.108 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hillemann D, Rusch-Gerdes S, Richter E. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother. 2008;52(2):800–1. doi:10.1128/aac.01189-07.

    Article  CAS  PubMed  Google Scholar 

  45. Livermore DM, Warner M, Mushtaq S, North S, Woodford N. In vitro activity of the oxazolidinone RWJ-416457 against linezolid-resistant and -susceptible staphylococci and enterococci. Antimicrob Agents Chemother. 2007;51(3):1112–4. doi:10.1128/aac.01347-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller K, Dunsmore CJ, Fishwick CW, Chopra I. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob Agents Chemother. 2008;52(5):1737–42. doi:10.1128/AAC.01015-07. AAC.01015-07 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prystowsky J, Siddiqui F, Chosay J, Shinabarger DL, Millichap J, Peterson LR, Noskin GA. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob Agents Chemother. 2001;45(7):2154–6. doi:10.1128/AAC.45.7.2154-2156.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Long KS, Munck C, Andersen TM, Schaub MA, Hobbie SN, Bottger EC, Vester B. Mutations in 23S rRNA at the peptidyl transferase center and their relationship to linezolid binding and cross-resistance. Antimicrob Agents Chemother. 2010;54(11):4705–13. doi:10.1128/aac.00644-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bourgeois-Nicolaos N, Massias L, Couson B, Butel MJ, Andremont A, Doucet-Populaire F. Dose dependence of emergence of resistance to linezolid in Enterococcus faecalis in vivo. J Infect Dis. 2007;195(10):1480–8. doi:10.1086/513876. JID37546 [pii].

    Article  CAS  PubMed  Google Scholar 

  50. Li BB, Wu CM, Wang Y, Shen JZ. Single and dual mutations at positions 2058, 2503 and 2504 of 23S rRNA and their relationship to resistance to antibiotics that target the large ribosomal subunit. J Antimicrob Chemother. 2011;66(9):1983–6. doi:10.1093/jac/dkr268.

    Article  CAS  PubMed  Google Scholar 

  51. Pournaras S, Ntokou E, Zarkotou O, Ranellou K, Themeli-Digalaki K, Stathopoulos C, Tsakris A. Linezolid dependence in Staphylococcus epidermidis bloodstream isolates. Emerg Infect Dis. 2013;19(1):129–32. doi:10.3201/eid1901.111527.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wong A, Reddy SP, Smyth DS, Aguero-Rosenfeld ME, Sakoulas G, Robinson DA. Polyphyletic emergence of linezolid-resistant staphylococci in the United States. Antimicrob Agents Chemother. 2010;54(2):742–8. doi:10.1128/aac.00621-09.

    Article  CAS  PubMed  Google Scholar 

  53. Xiong L, Kloss P, Douthwaite S, Andersen NM, Swaney S, Shinabarger DL, Mankin AS. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J Bacteriol. 2000;182(19):5325–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu J, Golshani A, Aoki H, Remme J, Chosay J, Shinabarger DL, Ganoza MC. Protected nucleotide G2608 in 23S rRNA confers resistance to oxazolidinones in E. coli. Biochem Biophys Res Commun. 2005;328(2):471–6. doi:10.1016/j.bbrc.2004.12.189.

    Article  CAS  PubMed  Google Scholar 

  55. Campanile F, Mongelli G, Bongiorno D, Adembri C, Ballardini M, Falcone M, Menichetti F, Repetto A, Sabia C, Sartor A, Scarparo C, Tascini C, Venditti M, Zoppi F, Stefani S. Worrisome trend of new multiple mechanisms of linezolid resistance in staphylococcal clones diffused in Italy. J Clin Microbiol. 2013;51(4):1256–9. doi:10.1128/jcm.00098-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hill RL, Kearns AM, Nash J, North SE, Pike R, Newson T, Woodford N, Calver R, Livermore DM. Linezolid-resistant ST36 methicillin-resistant Staphylococcus aureus associated with prolonged linezolid treatment in two paediatric cystic fibrosis patients. J Antimicrob Chemother. 2010;65(3):442–5. doi:10.1093/jac/dkp494. dkp494 [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Vardakas KZ, Kioumis I, Falagas ME. Association of pharmacokinetic and pharmacodynamic aspects of linezolid with infection outcome. Curr Drug Metab. 2009;10(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  58. Zurenko GE TW, Hafkin B, et al Development of linezolid-resistant Enterococcus faecium in two compassionate use program patients treated with linezolid [abstract 848]. In: Program and abstracts of the 39th interscience conference on antimicrobial agents and chemotherapy (San Francisco). Washington, DC: American Society for Microbiology; 1999. p. 118.

    Google Scholar 

  59. Pillai SK, Sakoulas G, Wennersten C, Eliopoulos GM, Moellering Jr RC, Ferraro MJ, Gold HS. Linezolid resistance in Staphylococcus aureus: characterization and stability of resistant phenotype. J Infect Dis. 2002;186(11):1603–7. doi:10.1086/345368. JID020606 [pii].

    Article  CAS  PubMed  Google Scholar 

  60. Besier S, Ludwig A, Zander J, Brade V, Wichelhaus TA. Linezolid resistance in Staphylococcus aureus: gene dosage effect, stability, fitness costs, and cross-resistances. Antimicrob Agents Chemother. 2008;52(4):1570–2. doi:10.1128/AAC.01098-07. AAC.01098-07 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ikeda-Dantsuji Y, Hanaki H, Nakae T, Takesue Y, Tomono K, Honda J, Yanagihara K, Mikamo H, Fukuchi K, Kaku M, Kohno S, Niki Y. Emergence of linezolid-resistant mutants in the susceptible cell population of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(5):2466–8. doi:10.1128/AAC.01548-10. AAC.01548-10 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arias CA, Vallejo M, Reyes J, Panesso D, Moreno J, Castaneda E, Villegas MV, Murray BE, Quinn JP. Clinical and microbiological aspects of linezolid resistance mediated by the cfr gene encoding a 23S rRNA methyltransferase. J Clin Microbiol. 2008;46(3):892–6. doi:10.1128/JCM.01886-07. JCM.01886-07 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Swoboda S, Fritz S, Martignoni ME, Feldhues RA, Hoppe-Tichy T, Buchler MW, Geiss HK. Varying linezolid susceptibility of vancomycin-resistant Enterococcus faecium isolates during therapy: a case report. J Antimicrob Chemother. 2005;56(4):787–9. doi:10.1093/jac/dki318.

    Article  CAS  PubMed  Google Scholar 

  64. Carsenti-Dellamonica H, Galimand M, Vandenbos F, Pradier C, Roger PM, Dunais B, Sabah M, Mancini G, Dellamonica P. In vitro selection of mutants of Streptococcus pneumoniae resistant to macrolides and linezolid: relationship with susceptibility to penicillin G or macrolides. J Antimicrob Chemother. 2005;56(4):633–42. doi:10.1093/jac/dki301.

    Article  CAS  PubMed  Google Scholar 

  65. Lobritz M, Hutton-Thomas R, Marshall S, Rice LB. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob Agents Chemother. 2003;47(10):3318–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Long KS, Poehlsgaard J, Hansen LH, Hobbie SN, Bottger EC, Vester B. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket. Mol Microbiol. 2009;71(5):1218–27. doi:10.1111/j.1365-2958.2009.06596.x.

    Article  CAS  PubMed  Google Scholar 

  67. Howe RA, Wootton M, Noel AR, Bowker KE, Walsh TR, MacGowan AP. Activity of AZD2563, a novel oxazolidinone, against Staphylococcus aureus strains with reduced susceptibility to vancomycin or linezolid. Antimicrob Agents Chemother. 2003;47(11):3651–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. North SE, Ellington MJ, Johnson AP, Livermore DM, Woodford N. Novel pyrosequencing assays to detect T2500A and other mutations conferring linezolid resistance in Staphylococcus aureus (abstract C2-272). In: Program and abstracts of the 45th interscience conference on antimicrobial agents and chemotherapy, Washington Convention Center. Washington, DC: American Society for Microbiology; 2005. p. 102.

    Google Scholar 

  69. Lincopan N, de Almeida LM, Elmor de Araujo MR, Mamizuka EM. Linezolid resistance in Staphylococcus epidermidis associated with a G2603T mutation in the 23S rRNA gene. Int J Antimicrob Agents. 2009;34(3):281–2. doi:10.1016/j.ijantimicag.2009.02.023. S0924-8579(09)00112-5 [pii].

    Article  CAS  PubMed  Google Scholar 

  70. Seral C, Saenz Y, Algarate S, Duran E, Luque P, Torres C, Castillo FJ. Nosocomial outbreak of methicillin- and linezolid-resistant Staphylococcus epidermidis associated with catheter-related infections in intensive care unit patients. Int J Med Microbiol. 2011;301(4):354–8. doi:10.1016/j.ijmm.2010.11.001. S1438-4221(10)00144-X [pii].

    Article  PubMed  Google Scholar 

  71. Sorlozano A, Gutierrez J, Martinez T, Yuste ME, Perez-Lopez JA, Vindel A, Guillen J, Boquete T. Detection of new mutations conferring resistance to linezolid in glycopeptide-intermediate susceptibility Staphylococcus hominis subspecies hominis circulating in an intensive care unit. Eur J Clin Microbiol Infect Dis. 2010;29(1):73–80. doi:10.1007/s10096-009-0823-4.

    Article  CAS  PubMed  Google Scholar 

  72. Stefani S, Bongiorno D, Mongelli G, Campanile F. Linezolid resistance in Staphylococci. Pharmaceuticals. 2010;3(7):1988–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Long KS, Vester B. Antibiotic resistance mechanisms, with an emphasis on those related to the ribosome. In: Lovett ST, editor. EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. Washington, DC: ASM Press; 2008. doi:10.1128/ecosalplus.2.5.7.

    Google Scholar 

  74. Toh SM, Mankin AS. An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol. 2008;380(4):593–7. doi:10.1016/j.jmb.2008.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Billal DS, Feng J, Leprohon P, Legare D, Ouellette M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics. 2011;12:512. doi:10.1186/1471-2164-12-512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, Holmes NE, Rhee HW, Hong JI, Hartland EL, Stinear TP, Howden BP. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog. 2010;6(6), e1000944. doi:10.1371/journal.ppat.1000944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. LaMarre JM, Howden BP, Mankin AS. Inactivation of the indigenous methyltransferase RlmN in Staphylococcus aureus increases linezolid resistance. Antimicrob Agents Chemother. 2011;55(6):2989–91. doi:10.1128/aac.00183-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol. 2005;57(4):1064–73. doi:10.1111/j.1365-2958.2005.04754.x.

    Article  CAS  PubMed  Google Scholar 

  79. Giessing AM, Jensen SS, Rasmussen A, Hansen LH, Gondela A, Long K, Vester B, Kirpekar F. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria. RNA (New York, NY). 2009;15(2):327–36. doi:10.1261/rna.1371409.

    Article  CAS  Google Scholar 

  80. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother. 2006;50(7):2500–5. doi:10.1128/aac.00131-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith LK, Mankin AS. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob Agents Chemother. 2008;52(5):1703–12. doi:10.1128/AAC.01583-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44(9):2530–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother. 2006;50(4):1156–63. doi:10.1128/aac.50.4.1156-1163.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Toh SM, Xiong L, Arias CA, Villegas MV, Lolans K, Quinn J, Mankin AS. Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Mol Microbiol. 2007;64(6):1506–14. doi:10.1111/j.1365-2958.2007.05744.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cai JC, Hu YY, Zhou HW, Chen GX, Zhang R. Dissemination of the same cfr-carrying plasmid among methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci isolates in China. Antimicrob Agents Chemother. 2015. doi:10.1128/aac.04580-14.

    Google Scholar 

  86. Mendes RE, Deshpande LM, Castanheira M, DiPersio J, Saubolle MA, Jones RN. First report of cfr-mediated resistance to linezolid in human staphylococcal clinical isolates recovered in the United States. Antimicrob Agents Chemother. 2008;52(6):2244–6. doi:10.1128/AAC.00231-08. AAC.00231-08 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cui L, Wang Y, Li Y, He T, Schwarz S, Ding Y, Shen J, Lv Y. Cfr-mediated linezolid-resistance among methicillin-resistant coagulase-negative staphylococci from infections of humans. PLoS One. 2013;8(2), e57096. doi:10.1371/journal.pone.0057096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajan V, Kumar VG, Gopal S. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res. 2014;139(3):463–7.

    PubMed  PubMed Central  Google Scholar 

  89. Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, Kekule AS, Werner G, Layer F. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother. 2015;70(6):1630–8. doi:10.1093/jac/dkv025.

    CAS  PubMed  Google Scholar 

  90. Baos E, Candel FJ, Merino P, Pena I, Picazo JJ. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2013;76(3):325–9. doi:10.1016/j.diagmicrobio.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  91. Bosling J, Poulsen SM, Vester B, Long KS. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3. Antimicrob Agents Chemother. 2003;47(9):2892–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Locke JB, Hilgers M, Shaw KJ. Novel ribosomal mutations in Staphylococcus aureus strains identified through selection with the oxazolidinones linezolid and torezolid (TR-700). Antimicrob Agents Chemother. 2009;53(12):5265–74. doi:10.1128/AAC.00871-09. AAC.00871-09 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mendes RE, Hogan PA, Streit JM, Jones RN, Flamm RK. Zyvox(R) Annual appraisal of potency and spectrum (ZAAPS) program: report of linezolid activity over 9 years (2004–12). J Antimicrob Chemother. 2014;69(6):1582–8. doi:10.1093/jac/dkt541.

    Article  CAS  PubMed  Google Scholar 

  94. Endimiani A, Blackford M, Dasenbrook EC, Reed MD, Bajaksouszian S, Hujer AM, Rudin SD, Hujer KM, Perreten V, Rice LB, Jacobs MR, Konstan MW, Bonomo RA. Emergence of linezolid-resistant Staphylococcus aureus after prolonged treatment of cystic fibrosis patients in Cleveland, Ohio. Antimicrob Agents Chemother. 2011;55(4):1684–92. doi:10.1128/AAC.01308-10. AAC.01308-10 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. de Almeida LM, de Araujo MR, Sacramento AG, Pavez M, de Souza AG, Rodrigues F, Gales AC, Lincopan N, Sampaio JL, Mamizuka EM. Linezolid resistance in Brazilian Staphylococcus hominis strains is associated with L3 and 23S rRNA ribosomal mutations. Antimicrob Agents Chemother. 2013;57(8):4082–3. doi:10.1128/aac.00437-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Locke JB, Hilgers M, Shaw KJ. Mutations in ribosomal protein L3 are associated with oxazolidinone resistance in staphylococci of clinical origin. Antimicrob Agents Chemother. 2009;53(12):5275–8. doi:10.1128/aac.01032-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Locke JB, Morales G, Hilgers M, G CK, Rahawi S, JosePicazo J, Shaw KJ, Stein JL. Elevated linezolid resistance in clinical cfr-positive Staphylococcus aureus isolates is associated with co-occurring mutations in ribosomal protein L3. Antimicrob Agents Chemother. 2010;54(12):5352–5. doi:10.1128/AAC.00714-10. AAC.00714-10 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kosowska-Shick K, Julian KG, McGhee PL, Appelbaum PC, Whitener CJ. Molecular and epidemiologic characteristics of linezolid-resistant coagulase-negative staphylococci at a tertiary care hospital. Diagn Microbiol Infect Dis. 2010;68(1):34–9. doi:10.1016/j.diagmicrobio.2010.05.007.

    Article  CAS  PubMed  Google Scholar 

  99. LaMarre J, Mendes RE, Szal T, Schwarz S, Jones RN, Mankin AS. The genetic environment of the cfr gene and the presence of other mechanisms account for the very high linezolid resistance of Staphylococcus epidermidis isolate 426-3147L. Antimicrob Agents Chemother. 2013;57(3):1173–9. doi:10.1128/aac.02047-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mendes RE, Deshpande LM, Farrell DJ, Spanu T, Fadda G, Jones RN. Assessment of linezolid resistance mechanisms among Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J Antimicrob Chemother. 2010;65(11):2329–35. doi:10.1093/jac/dkq331. dkq331 [pii].

    Article  CAS  PubMed  Google Scholar 

  101. Barros M, Branquinho R, Grosso F, Peixe L, Novais C. Linezolid-Resistant Staphylococcus epidermidis, Portugal, 2012. Emerg Infect Dis. 2014;20(5):903–5. doi:10.3201/eid2005.130783.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mendes RE, Deshpande L, Rodriguez-Noriega E, Ross JE, Jones RN, Morfin-Otero R. First report of Staphylococcal clinical isolates in Mexico with linezolid resistance caused by cfr: evidence of in vivo cfr mobilization. J Clin Microbiol. 2010;48(8):3041–3. doi:10.1128/JCM.00880-10. JCM.00880-10 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  103. Beckert P, Hillemann D, Kohl TA, Kalinowski J, Richter E, Niemann S, Feuerriegel S. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother. 2012;56(5):2743–5. doi:10.1128/aac.06227-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang Z, Pang Y, Wang Y, Liu C, Zhao Y. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrug-resistant and extensively drug-resistant tuberculosis in China. Int J Antimicrob Agents. 2014;43(3):231–5. doi:10.1016/j.ijantimicag.2013.12.007.

    Article  CAS  PubMed  Google Scholar 

  105. Gentry DR, Rittenhouse SF, McCloskey L, Holmes DJ. Stepwise exposure of Staphylococcus aureus to pleuromutilins is associated with stepwise acquisition of mutations in rplC and minimally affects susceptibility to retapamulin. Antimicrob Agents Chemother. 2007;51(6):2048–52. doi:10.1128/aac.01066-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kosowska-Shick K, Clark C, Credito K, McGhee P, Dewasse B, Bogdanovich T, Appelbaum PC. Single- and multistep resistance selection studies on the activity of retapamulin compared to other agents against Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother. 2006;50(2):765–9. doi:10.1128/aac.50.2.765-769.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wolter N, Smith AM, Farrell DJ, Schaffner W, Moore M, Whitney CG, Jorgensen JH, Klugman KP. Novel mechanism of resistance to oxazolidinones, macrolides, and chloramphenicol in ribosomal protein L4 of the pneumococcus. Antimicrob Agents Chemother. 2005;49(8):3554–7. doi:10.1128/aac.49.8.3554-3557.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gregory ST, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol. 1999;289(4):827–34. doi:10.1006/jmbi.1999.2839.

    Article  CAS  PubMed  Google Scholar 

  109. Barbachyn MR, Ford CW. Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed Engl. 2003;42(18):2010–23. doi:10.1002/anie.200200528.

    Article  CAS  PubMed  Google Scholar 

  110. Schumacher A, Trittler R, Bohnert JA, Kummerer K, Pages JM, Kern WV. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother. 2007;59(6):1261–4. doi:10.1093/jac/dkl380.

    Article  CAS  PubMed  Google Scholar 

  111. Smith KP, Kumar S, Varela MF. Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol. 2009;191(12):903–11. doi:10.1007/s00203-009-0521-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Floyd JL, Smith KP, Kumar SH, Floyd JT, Varela MF. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5406–12. doi:10.1128/aac.00580-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. LaMarre JM, Locke JB, Shaw KJ, Mankin AS. Low fitness cost of the multidrug resistance gene cfr. Antimicrob Agents Chemother. 2011;55(8):3714–9. doi:10.1128/aac.00153-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsakris A, Pillai SK, Gold HS, Thauvin-Eliopoulos C, Venkataraman L, Wennersten C, Moellering Jr RC, Eliopoulos GM. Persistence of rRNA operon mutated copies and rapid re-emergence of linezolid resistance in Staphylococcus aureus. J Antimicrob Chemother. 2007;60(3):649–1. doi:10.1093/jac/dkm246. dkm246 [pii].

    Article  CAS  PubMed  Google Scholar 

  115. Hidalgo A, Carvajal A, Vester B, Pringle M, Naharro G, Rubio P. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain. Antimicrob Agents Chemother. 2011;55(7):3330–7. doi:10.1128/aac.01749-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pringle M, Poehlsgaard J, Vester B, Long KS. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol. 2004;54(5):1295–306. doi:10.1111/j.1365-2958.2004.04373.x.

    Article  CAS  PubMed  Google Scholar 

  117. Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 2001;45(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. ZAAPS Program results for 2010: an activity and spectrum analysis of linezolid using clinical isolates from 75 medical centres in 24 countries. J Chemother (Florence, Italy). 2012;24(6):328–37. doi:10.1179/1973947812y.0000000039.

    Article  CAS  Google Scholar 

  119. Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266–78. doi:10.1038/nrmicro2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46 Suppl 5:S344–9. doi:10.1086/533590.

    Article  PubMed  Google Scholar 

  121. Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. LEADER Program results for 2009: an activity and spectrum analysis of linezolid using 6,414 clinical isolates from 56 medical centers in the United States. Antimicrob Agents Chemother. 2011;55(8):3684–90. doi:10.1128/aac.01729-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kock R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E, Navarro Torne A, Witte W, Friedrich AW. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 2010;15(41):19688.

    CAS  PubMed  Google Scholar 

  123. Rivera AM, Boucher HW. Current concepts in antimicrobial therapy against select Gram-positive organisms: methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci. Mayo Clin Proc. 2011;86(12):1230–43. doi:10.4065/mcp.2011.0514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest. 2005;128(6):3854–62. doi:10.1378/chest.128.6.3854.

    Article  PubMed  Google Scholar 

  125. Shorr AF. Epidemiology of staphylococcal resistance. Clin Infect Dis. 2007;45 Suppl 3:S171–6. doi:10.1086/519473.

    Article  PubMed  Google Scholar 

  126. Anderegg TR, Sader HS, Fritsche TR, Ross JE, Jones RN. Trends in linezolid susceptibility patterns: report from the 2002–2003 worldwide Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) Program. Int J Antimicrob Agents. 2005;26(1):13–21. doi:10.1016/j.ijantimicag.2005.02.019.

    Article  CAS  PubMed  Google Scholar 

  127. Biedenbach DJ, Farrell DJ, Mendes RE, Ross JE, Jones RN. Stability of linezolid activity in an era of mobile oxazolidinone resistance determinants: results from the 2009 Zyvox(R) Annual Appraisal of Potency and Spectrum program. Diagn Microbiol Infect Dis. 2010;68(4):459–67. doi:10.1016/j.diagmicrobio.2010.09.018.

    Article  CAS  PubMed  Google Scholar 

  128. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother. 2013;68(1):4–11. doi:10.1093/jac/dks354.

    Article  CAS  PubMed  Google Scholar 

  129. Jones RN, Ballow CH, Biedenbach DJ. Multi-laboratory assessment of the linezolid spectrum of activity using the Kirby-Bauer disk diffusion method: report of the Zyvox Antimicrobial Potency Study (ZAPS) in the United States. Diagn Microbiol Infect Dis. 2001;40(1–2):59–66.

    Article  CAS  PubMed  Google Scholar 

  130. Jones RN, Fritsche TR, Sader HS, Ross JE. Zyvox annual appraisal of potency and spectrum program results for 2006: an activity and spectrum analysis of linezolid using clinical isolates from 16 countries. Diagn Microbiol Infect Dis. 2007;59(2):199–209. doi:10.1016/j.diagmicrobio.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  131. Jones RN, Kohno S, Ono Y, Ross JE, Yanagihara K. ZAAPS International Surveillance Program (2007) for linezolid resistance: results from 5591 Gram-positive clinical isolates in 23 countries. Diagn Microbiol Infect Dis. 2009;64(2):191–201. doi:10.1016/j.diagmicrobio.2009.03.001.

    Article  CAS  PubMed  Google Scholar 

  132. Johnson AP, Tysall L, Stockdale MV, Woodford N, Kaufmann ME, Warner M, Livermore DM, Asboth F, Allerberger FJ. Emerging linezolid-resistant Enterococcus faecalis and Enterococcus faecium isolated from two Austrian patients in the same intensive care unit. Eur J Clin Microbiol Infect Dis. 2002;21(10):751–4. doi:10.1007/s10096-002-0807-0.

    Article  CAS  PubMed  Google Scholar 

  133. Auckland C, Teare L, Cooke F, Kaufmann ME, Warner M, Jones G, Bamford K, Ayles H, Johnson AP. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom. J Antimicrob Chemother. 2002;50(5):743–6.

    Article  CAS  PubMed  Google Scholar 

  134. Bassetti M, Farrel PA, Callan DA, Topal JE, Dembry LM. Emergence of linezolid-resistant Enterococcus faecium during treatment of enterococcal infections. Int J Antimicrob Agents. 2003;21(6):593–4.

    Article  CAS  PubMed  Google Scholar 

  135. Seedat J, Zick G, Klare I, Konstabel C, Weiler N, Sahly H. Rapid emergence of resistance to linezolid during linezolid therapy of an Enterococcus faecium infection. Antimicrob Agents Chemother. 2006;50(12):4217–9. doi:10.1128/aac.00518-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rahim S, Pillai SK, Gold HS, Venkataraman L, Inglima K, Press RA. Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin Infect Dis. 2003;36(11):E146–8. doi:10.1086/374929.

    Article  PubMed  Google Scholar 

  137. Ntokou E, Stathopoulos C, Kristo I, Dimitroulia E, Labrou M, Vasdeki A, Makris D, Zakynthinos E, Tsakris A, Pournaras S. Intensive care unit dissemination of multiple clones of linezolid-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2012;67(8):1819–23. doi:10.1093/jac/dks146.

    Article  CAS  PubMed  Google Scholar 

  138. Ballow CH, Jones RN, Biedenbach DJ. A multicenter evaluation of linezolid antimicrobial activity in North America. Diagn Microbiol Infect Dis. 2002;43(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  139. Bell JM, Turnidge JD, Ballow CH, Jones RN. Multicentre evaluation of the in vitro activity of linezolid in the Western Pacific. J Antimicrob Chemother. 2003;51(2):339–45.

    Article  CAS  PubMed  Google Scholar 

  140. Bolmstrom A, Ballow CH, Qwarnstrom A, Biedenbach DJ, Jones RN. Multicentre assessment of linezolid antimicrobial activity and spectrum in Europe: report from the Zyvox antimicrobial potency study (ZAPS-Europe). Clin Microbiol Infect. 2002;8(12):791–800.

    Article  CAS  PubMed  Google Scholar 

  141. Flamm RK, Mendes RE, Ross JE, Sader HS, Jones RN. An international activity and spectrum analysis of linezolid: ZAAPS Program results for 2011. Diagn Microbiol Infect Dis. 2013;76(2):206–13. doi:10.1016/j.diagmicrobio.2013.01.025.

    Article  CAS  PubMed  Google Scholar 

  142. Ross JE, Fritsche TR, Sader HS, Jones RN. Oxazolidinone susceptibility patterns for 2005: International Report from the Zyvox Annual Appraisal of Potency and Spectrum Study. Int J Antimicrob Agents. 2007;29(3):295–301. doi:10.1016/j.ijantimicag.2006.09.025.

    Article  CAS  PubMed  Google Scholar 

  143. Draghi DC, Sheehan DJ, Hogan P, Sahm DF. In vitro activity of linezolid against key Gram-positive organisms isolated in the united states: results of the LEADER 2004 surveillance program. Antimicrob Agents Chemother. 2005;49(12):5024–32. doi:10.1128/aac.49.12.5024-5032.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Draghi DC, Sheehan DF, Hogan P, Sahm DF. Current antimicrobial resistance profiles among methicillin-resistant Staphylococcus aureus encountered in the outpatient setting. Diagn Microbiol Infect Dis. 2006;55(2):129–33. doi:10.1016/j.diagmicrobio.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  145. Farrell DJ, Mendes RE, Ross JE, Jones RN. Linezolid surveillance program results for 2008 (LEADER Program for 2008). Diagn Microbiol Infect Dis. 2009;65(4):392–403. doi:10.1016/j.diagmicrobio.2009.10.011.

    Article  PubMed  Google Scholar 

  146. Jones RN, Fritsche TR, Sader HS, Ross JE. LEADER surveillance program results for 2006: an activity and spectrum analysis of linezolid using clinical isolates from the United States (50 medical centers). Diagn Microbiol Infect Dis. 2007;59(3):309–17. doi:10.1016/j.diagmicrobio.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  147. Jones RN, Ross JE, Castanheira M, Mendes RE. United States resistance surveillance results for linezolid (LEADER Program for 2007). Diagn Microbiol Infect Dis. 2008;62(4):416–26. doi:10.1016/j.diagmicrobio.2008.10.010.

    Article  CAS  PubMed  Google Scholar 

  148. Flamm RK, Mendes RE, Ross JE, Sader HS, Jones RN. Linezolid surveillance results for the United States: LEADER surveillance program 2011. Antimicrob Agents Chemother. 2013;57(2):1077–81. doi:10.1128/aac.02112-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chen H, Wu W, Ni M, Liu Y, Zhang J, Xia F, He W, Wang Q, Wang Z, Cao B, Wang H. Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms. Int J Antimicrob Agents. 2013;42(4):317–21. doi:10.1016/j.ijantimicag.2013.06.008.

    Article  CAS  PubMed  Google Scholar 

  150. Yang XJ, Chen Y, Yang Q, Qu TT, Liu LL, Wang HP, Yu YS. Emergence of cfr-harbouring coagulase-negative staphylococci among patients receiving linezolid therapy in two hospitals in China. J Med Microbiol. 2013;62(Pt 6):845–50. doi:10.1099/jmm.0.051003-0.

    Article  CAS  PubMed  Google Scholar 

  151. Patel SN, Memari N, Shahinas D, Toye B, Jamieson FB, Farrell DJ. Linezolid resistance in Enterococcus faecium isolated in Ontario, Canada. Diagn Microbiol Infect Dis. 2013;77(4):350–3. doi:10.1016/j.diagmicrobio.2013.08.012.

    Article  CAS  PubMed  Google Scholar 

  152. Flamm RK, Farrell DJ, Mendes RE, Ross JE, Sader HS, Jones RN. LEADER surveillance program results for 2010: an activity and spectrum analysis of linezolid using 6801 clinical isolates from the United States (61 medical centers). Diagn Microbiol Infect Dis. 2012;74(1):54–61. doi:10.1016/j.diagmicrobio.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  153. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother. 2012;56(7):3917–22. doi:10.1128/aac.00419-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Pelaez B, Andrade R, de la Torre MA, Fereres J, Sanchez-Garcia M. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis. 2010;50(6):821–5. doi:10.1086/650574.

    Article  CAS  PubMed  Google Scholar 

  155. Bonilla H, Huband MD, Seidel J, Schmidt H, Lescoe M, McCurdy SP, Lemmon MM, Brennan LA, Tait-Kamradt A, Puzniak L, Quinn JP. Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis. 2010;51(7):796–800. doi:10.1086/656281.

    Article  PubMed  Google Scholar 

  156. Ball AT, Xu Y, Sanchez RJ, Shelbaya A, Deminski MC, Nau DP. Nonadherence to oral linezolid after hospitalization: a retrospective claims analysis of the incidence and consequence of claim reversals. Clin Ther. 2010;32(13):2246–55. doi:10.1016/s0149-2918(10)80027-x.

    Article  PubMed  Google Scholar 

  157. Tenover FC, Williams PP, Stocker S, Thompson A, Clark LA, Limbago B, Carey RB, Poppe SM, Shinabarger D, McGowan Jr JE. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol. 2007;45(9):2917–22. doi:10.1128/jcm.00913-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birte Vester Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ntokou, E., Vester, B. (2017). Resistance to Linezolid. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_22

Download citation

Publish with us

Policies and ethics