Skip to main content

Daptomycin Resistance

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

Daptomycin is a cyclic lipopeptide antibiotic and the first member of this novel class of antimicrobials to gain approval for commercial use. Initially isolated in the 1980s, daptomycin is a component of an antibiotic complex naturally synthesized by Streptomyces roseosporus [1]. Like the other lipopeptide components of this complex, daptomycin comprises a thirteen amino acid hydrophilic peptide core with a lipophilic fatty acid “tail” which acrylates the N-terminus of the exocyclic side chain [2]. It is the lipophilic “tail” that is believed to be essential to the antibiotic activity of these compounds, and daptomycin’s unique decanoic acid “tail” is its distinguishing characteristic [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tally FP, DeBruin MF. Development of daptomycin for gram-positive infections. J Antimicrob Chemother. 2000;46:523–6.

    Article  CAS  PubMed  Google Scholar 

  2. Robbel L, Marahiel MA. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem. 2010;285:27501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muraih JK, Pearson A, Silverman J, et al. Oligomerization of daptomycin on membranes. Biochim Biophys Acta. 1808;2011:1154–60.

    Google Scholar 

  4. Jung D, Rozek A, Okon M, et al. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol. 2004;11:949–57.

    Article  CAS  PubMed  Google Scholar 

  5. Alborn Jr WE, Allen NE, Preston DA. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother. 1991;35:2282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47:2538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pogliano J, Pogliano N, Silverman JA. Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol. 2012;194:4494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Safdar N, Andes D, Craig WA. In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother. 2004;48:63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Werth BJ, Steed ME, Ireland CE, et al. Defining daptomycin resistance prevention exposures in vancomycin-resistant Enterococcus faecium and E. faecalis. Antimicrob Agents Chemother. 2014;58:5253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arbeit RD, Maki D, Tally FP, et al. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis. 2004;38:1673–81.

    Article  CAS  PubMed  Google Scholar 

  11. Fowler Jr VG, Boucher HW, Corey GR, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.

    Article  CAS  PubMed  Google Scholar 

  12. Liang SY, Khair HN, McDonald JR, et al. Daptomycin versus vancomycin for osteoarticular infections due to methicillin-resistant Staphylococcus aureus (MRSA): a nested case-control study. Eur J Clin Microbiol Infect Dis. 2014;33:659–64.

    Article  CAS  PubMed  Google Scholar 

  13. Ramaswamy DP, Amodio-Groton M, Scholand SJ. Use of daptomycin in the treatment of vancomycin-resistant enterococcal urinary tract infections: a short case series. BMC Urol. 2013;13:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Munita JM, Murray BE, Arias CA. Daptomycin for the treatment of bacteraemia due to vancomycin-resistant enterococci. Int J Antimicrob Agents. 2014;44:387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pertel PE, Bernardo P, Fogarty C, et al. Effects of prior effective therapy on the efficacy of daptomycin and ceftriaxone for the treatment of community-acquired pneumonia. Clin Infect Dis. 2008;46:1142–51.

    Article  CAS  PubMed  Google Scholar 

  16. Silverman JA, Mortin LI, Vanpraagh AD, et al. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J Infect Dis. 2005;191:2149–52.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma M, Riederer K, Chase P, et al. High rate of decreasing daptomycin susceptibility during the treatment of persistent Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2008;27:433–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sakoulas G, Rose W, Rybak MJ, et al. Evaluation of endocarditis caused by methicillin-susceptible Staphylococcus aureus developing nonsusceptibility to daptomycin. J Clin Microbiol. 2008;46:220–4.

    Article  CAS  PubMed  Google Scholar 

  19. Humphries RM, Kelesidis T, Tewhey R, et al. Genotypic and phenotypic evaluation of the evolution of high-level daptomycin nonsusceptibility in vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56:6051–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Munita JM, Mishra NN, Alvarez D, et al. Failure of high-dose daptomycin for bacteremia caused by daptomycin-susceptible Enterococcus faecium harboring LiaSR substitutions. Clin Infect Dis. 2014;59:1277–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sader HS, Farrell DJ, Jones RN. Antimicrobial activity of daptomycin tested against gram-positive strains collected in European hospitals: results from 7 years of resistance surveillance (2003–2009). J Chemother. 2011;23:200–6.

    Article  CAS  PubMed  Google Scholar 

  22. Sader HS, Moet GJ, Farrell DJ, et al. Antimicrobial susceptibility of daptomycin and comparator agents tested against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: trend analysis of a 6-year period in US medical centers (2005–2010). Diagn Microbiol Infect Dis. 2011;70:412–6.

    Article  CAS  PubMed  Google Scholar 

  23. Sader HS, Farrell DJ, Flamm RK, et al. Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme (2005–2012). Int J Antimicrob Agents. 2014;43:465–9.

    Article  CAS  PubMed  Google Scholar 

  24. Friedman L, Alder JD, Silverman JA. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:2137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patel D, Husain M, Vidaillac C, et al. Mechanisms of in-vitro-selected daptomycin-non-susceptibility in Staphylococcus aureus. Int J Antimicrob Agents. 2011;38:442–6.

    Article  CAS  PubMed  Google Scholar 

  26. Murthy MH, Olson ME, Wickert RW, et al. Daptomycin non-susceptible meticillin-resistant Staphylococcus aureus USA 300 isolate. J Med Microbiol. 2008;57:1036–8.

    Article  PubMed  Google Scholar 

  27. Yang SJ, Xiong YQ, Dunman PM, et al. Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother. 2009;53:2636–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubio A, Conrad M, Haselbeck RJ, et al. Regulation of mprF by antisense RNA restores daptomycin susceptibility to daptomycin-resistant isolates of Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55:364–7.

    Article  CAS  PubMed  Google Scholar 

  29. Oku Y, Kurokawa K, Ichihashi N, et al. Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology. 2004;150:45–51.

    Article  CAS  PubMed  Google Scholar 

  30. Staubitz P, Neumann H, Schneider T, et al. MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett. 2004;231:67–71.

    Article  CAS  PubMed  Google Scholar 

  31. Ernst CM, Staubitz P, Mishra NN, et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 2009;5, e1000660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Mishra NN, Yang SJ, Chen L, et al. Emergence of daptomycin resistance in daptomycin-naive rabbits with methicillin-resistant Staphylococcus aureus prosthetic joint infection is associated with resistance to host defense cationic peptides and mprF polymorphisms. PLoS One. 2013;8, e71151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones T, Yeaman MR, Sakoulas G, et al. Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother. 2008;52:269–78.

    Article  CAS  PubMed  Google Scholar 

  34. Kaatz GW, Lundstrom TS, Seo SM. Mechanisms of daptomycin resistance in Staphylococcus aureus. Int J Antimicrob Agents. 2006;28:280–7.

    Article  CAS  PubMed  Google Scholar 

  35. Yang SJ, Kreiswirth BN, Sakoulas G, et al. Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis. 2009;200:1916–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra NN, Bayer AS, Weidenmaier C, et al. Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS One. 2014;9, e107426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mishra NN, Rubio A, Nast CC, et al. Differential adaptations of methicillin-resistant Staphylococcus aureus to serial in vitro passage in daptomycin: evolution of daptomycin resistance and role of membrane carotenoid content and fluidity. Int J Microbiol. 2012;2012:683450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mishra NN, Yang SJ, Sawa A, et al. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:2312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra NN, Liu GY, Yeaman MR, et al. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother. 2011;55:526–31.

    Article  CAS  PubMed  Google Scholar 

  40. Clausen VA, Bae W, Throup J, et al. Biochemical characterization of the first essential two-component signal transduction system from Staphylococcus aureus and Streptococcus pneumoniae. J Mol Microbiol Biotechnol. 2003;5:252–60.

    Article  CAS  PubMed  Google Scholar 

  41. Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci. 2013;1277:139–58.

    Article  CAS  PubMed  Google Scholar 

  42. Bertsche U, Weidenmaier C, Kuehner D, et al. Correlation of daptomycin resistance in a clinical Staphylococcus aureus strain with increased cell wall teichoic acid production and D-alanylation. Antimicrob Agents Chemother. 2011;55:3922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bertsche U, Yang SJ, Kuehner D, et al. Increased cell wall teichoic acid production and D-alanylation are common phenotypes among daptomycin-resistant methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. PLoS One. 2013;8, e67398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cafiso V, Bertuccio T, Purrello S, et al. dltA overexpression: a strain-independent keystone of daptomycin resistance in methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2014;43:26–31.

    Article  CAS  PubMed  Google Scholar 

  45. Kuroda M, Kuroda H, Oshima T, et al. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol. 2003;49:807–21.

    Article  CAS  PubMed  Google Scholar 

  46. Kuroda M, Ohta T, Uchiyama I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357:1225–40.

    Article  CAS  PubMed  Google Scholar 

  47. Dengler V, Meier PS, Heusser R, et al. Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiol. 2011;11:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Camargo IL, Neoh HM, Cui L, et al. Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob Agents Chemother. 2008;52:4289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yin S, Daum RS, Boyle-Vavra S. VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gardete S, Wu SW, Gill S, et al. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:3424–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muthaiyan A, Silverman JA, Jayaswal RK, et al. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother. 2008;52:980–90.

    Article  CAS  PubMed  Google Scholar 

  52. Mehta S, Cuirolo AX, Plata KB, et al. VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:92–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mwangi MM, Wu SW, Zhou Y, et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A. 2007;104:9451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui L, Tominaga E, Neoh HM, et al. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:1079–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patel JB, Jevitt LA, Hageman J, et al. An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in Staphylococcus aureus. Clin Infect Dis. 2006;42:1652–3.

    Article  CAS  PubMed  Google Scholar 

  56. Sakoulas G, Alder J, Thauvin-Eliopoulos C, et al. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob Agents Chemother. 2006;50:1581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pillai SK, Gold HS, Sakoulas G, et al. Daptomycin nonsusceptibility in Staphylococcus aureus with reduced vancomycin susceptibility is independent of alterations in MprF. Antimicrob Agents Chemother. 2007;51:2223–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruzin A, Severin A, Moghazeh SL, et al. Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim Biophys Acta. 1621;2003:117–21.

    Google Scholar 

  59. Rose WE, Leonard SN, Sakoulas G, et al. Daptomycin activity against Staphylococcus aureus following vancomycin exposure in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2008;52:831–6.

    Article  CAS  PubMed  Google Scholar 

  60. Julian K, Kosowska-Shick K, Whitener C, et al. Characterization of a daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus strain in a patient with endocarditis. Antimicrob Agents Chemother. 2007;51:3445–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vidaillac C, Gardete S, Tewhey R, et al. Alternative mutational pathways to intermediate resistance to vancomycin in methicillin-resistant Staphylococcus aureus. J Infect Dis. 2013;208:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trier DA, Gank KD, Kupferwasser D, et al. Platelet antistaphylococcal responses occur through P2X1 and P2Y12 receptor-induced activation and kinocidin release. Infect Immun. 2008;76:5706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiong YQ, Mukhopadhyay K, Yeaman MR, et al. Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:3114–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bayer AS, Mishra NN, Sakoulas G, et al. Heterogeneity of mprF sequences in methicillin-resistant Staphylococcus aureus clinical isolates: role in cross-resistance between daptomycin and host defense antimicrobial peptides. Antimicrob Agents Chemother. 2014;58:7462–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cheung AL, Bayer AS, Yeaman MR, et al. Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun. 2014;82:5336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rose WE, Leonard SN, Rybak MJ. Evaluation of daptomycin pharmacodynamics and resistance at various dosage regimens against Staphylococcus aureus isolates with reduced susceptibilities to daptomycin in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother. 2008;52:3061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ortwine JK, Werth BJ, Sakoulas G, et al. Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the “seesaw effect”: taking advantage of the back door left open? Drug Resist Updat. 2013;16:73–9.

    Article  CAS  PubMed  Google Scholar 

  68. Sieradzki K, Tomasz A. Gradual alterations in cell wall structure and metabolism in vancomycin-resistant mutants of Staphylococcus aureus. J Bacteriol. 1999;181:7566–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Werth BJ, Vidaillac C, Murray KP, et al. Novel combinations of vancomycin plus ceftaroline or oxacillin against methicillin-resistant vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother. 2013;57:2376–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leonard SN. Synergy between vancomycin and nafcillin against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. PLoS One. 2012;7, e42103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leonard SN, Rolek KM. Evaluation of the combination of daptomycin and nafcillin against vancomycin-intermediate Staphylococcus aureus. J Antimicrob Chemother. 2013;68:644–7.

    Article  CAS  PubMed  Google Scholar 

  72. Fox PM, Lampen RJ, Stumpf KS, et al. Successful therapy of experimental endocarditis caused by vancomycin-resistant Staphylococcus aureus with a combination of vancomycin and beta-lactam antibiotics. Antimicrob Agents Chemother. 2006;50:2951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibilities to vancomycin. Antimicrob Agents Chemother. 1999;43:1747–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang SJ, Xiong YQ, Boyle-Vavra S, et al. Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the “seesaw effect”). Antimicrob Agents Chemother. 2010;54:3161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dhand A, Bayer AS, Pogliano J, et al. Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: role of enhanced daptomycin binding. Clin Infect Dis. 2011;53:158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berti AD, Sakoulas G, Nizet V, et al. beta-Lactam antibiotics targeting PBP1 selectively enhance daptomycin activity against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57:5005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barber KE, Werth BJ, Ireland CE, et al. Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. J Antimicrob Chemother. 2014;69:3006–10.

    Article  CAS  PubMed  Google Scholar 

  78. Werth BJ, Sakoulas G, Rose WE, et al. Ceftaroline increases membrane binding and enhances the activity of daptomycin against daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus in a pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57:66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rose WE, Schulz LT, Andes D, et al. Addition of ceftaroline to daptomycin after emergence of daptomycin-nonsusceptible Staphylococcus aureus during therapy improves antibacterial activity. Antimicrob Agents Chemother. 2012;56:5296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Werth BJ, Barber KE, Ireland CE, et al. Evaluation of ceftaroline, vancomycin, daptomycin, or ceftaroline plus daptomycin against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2014;58:3177–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sakoulas G, Moise PA, Casapao AM, et al. Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline. Clin Ther. 2014;36:1317–33.

    Article  CAS  PubMed  Google Scholar 

  82. Steed ME, Vidaillac C, Rybak MJ. Novel daptomycin combinations against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus in an in vitro model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2010;54:5187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Steed ME, Werth BJ, Ireland CE, et al. Evaluation of the novel combination of high-dose daptomycin plus trimethoprim-sulfamethoxazole against daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus using an in vitro pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Antimicrob Agents Chemother. 2012;56:5709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Avery LM, Steed ME, Woodruff AE, et al. Daptomycin-nonsusceptible vancomycin-intermediate staphylococcus aureus vertebral osteomyelitis cases complicated by bacteremia treated with high-dose daptomycin and trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother. 2012;56:5990–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Claeys KC, Smith JR, Casapao AM, Mynatt RP, Avery L, Shroff A, Yamamura D, Davis SL, Rybak MJ. Combination daptomycin and trimethoprim/sulfamethoxazole on clinical outcomes in methicillin-resistant S. aureus Infections. Antimicrob Agents Chemother. 2015;59(4):1969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rybak JM, Barber KE, Rybak MJ. Current and prospective treatments for multidrug-resistant gram-positive infections. Expert Opin Pharmacother. 2013;14:1919–32.

    Article  CAS  PubMed  Google Scholar 

  87. Barber KE, Ireland CE, Bukavyn N, et al. Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains. Infect Dis Ther. 2014;3:35–43.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sader HS, Flamm RK, Jones RN. Antimicrobial activity of ceftaroline tested against staphylococci with reduced susceptibility to linezolid, daptomycin, or vancomycin from U.S. hospitals, 2008 to 2011. Antimicrob Agents Chemother. 2013;57:3178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother. 2014;58:2541–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rybak JM, Marx K, Martin CA. Early experience with tedizolid: clinical efficacy, pharmacodynamics, and resistance. Pharmacotherapy. 2014;34:1198–208.

    Article  CAS  PubMed  Google Scholar 

  91. Flamm RK, Mendes RE, Hogan PA, et al. In vitro activity of linezolid as assessed through the 2013 LEADER surveillance program. Diagn Microbiol Infect Dis. 2015;81(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  92. Sahm DF, Deane J, Bien PA, et al. Results of the surveillance of Tedizolid activity and resistance program: in vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn Microbiol Infect Dis. 2015;81:112–8.

    Article  CAS  PubMed  Google Scholar 

  93. (CLSI) CaLSI. Performance standards for antimicrobial susceptibility testing; 24th Informational Supplement. CLSI M100-S24. Clinical and Laboratory Science Institute (CLSI), Wayne, PA, 2014.

    Google Scholar 

  94. Mendes RE, Sader HS, Flamm RK, et al. Telavancin in vitro activity against a collection of methicillin-resistant Staphylococcus aureus isolates, including resistant subsets, from the United States. Antimicrob Agents Chemother. 2015;59:1811–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Steed ME, Vidaillac C, Rybak MJ. Evaluation of telavancin activity versus daptomycin and vancomycin against daptomycin-nonsusceptible Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2012;56:955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiong YQ, Hady WA, Bayer AS, et al. Telavancin in therapy of experimental aortic valve endocarditis in rabbits due to daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56:5528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joson J, Grover C, Downer C, et al. Successful treatment of methicillin-resistant Staphylococcus aureus mitral valve endocarditis with sequential linezolid and telavancin monotherapy following daptomycin failure. J Antimicrob Chemother. 2011;66:2186–8.

    Article  CAS  PubMed  Google Scholar 

  98. Vidaillac C, Parra-Ruiz J, Rybak MJ. In vitro time-kill analysis of oritavancin against clinical isolates of methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin. Diagn Microbiol Infect Dis. 2011;71:470–3.

    Article  CAS  PubMed  Google Scholar 

  99. McKay GA, Beaulieu S, Arhin FF, et al. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2009;63:1191–9.

    Article  CAS  PubMed  Google Scholar 

  100. Mendes RE, Sader HS, Flamm RK, et al. Oritavancin activity against Staphylococcus aureus causing invasive infections in U.S. and European hospitals: a 5-year international surveillance program. Antimicrob Agents Chemother. 2014;58:2921–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Jones RN, Sader HS, Flamm RK. Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn Microbiol Infect Dis. 2013;75:304–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lewis 2nd JS, Owens A, Cadena J, et al. Emergence of daptomycin resistance in Enterococcus faecium during daptomycin therapy. Antimicrob Agents Chemother. 2005;49:1664–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Munoz-Price LS, Lolans K, Quinn JP. Emergence of resistance to daptomycin during treatment of vancomycin-resistant Enterococcus faecalis infection. Clin Infect Dis. 2005;41:565–6.

    Article  PubMed  Google Scholar 

  104. Jordan S, Junker A, Helmann JD, et al. Regulation of LiaRS-dependent gene expression in bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol. 2006;188:5153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wolf D, Kalamorz F, Wecke T, et al. In-depth profiling of the LiaR response of Bacillus subtilis. J Bacteriol. 2010;192:4680–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mascher T, Zimmer SL, Smith TA, et al. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother. 2004;48:2888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983;258:5428–32.

    CAS  PubMed  Google Scholar 

  108. Mileykovskaya E, Dowhan W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta. 1788;2009:2084–91.

    Google Scholar 

  109. Tropp BE. Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta. 1997;1348:192–200.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang YM, Rock CO. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 2008;6:222–33.

    Article  PubMed  CAS  Google Scholar 

  111. Arias CA, Panesso D, McGrath DM, et al. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med. 2011;365:892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tran TT, Panesso D, Gao H, et al. Whole-genome analysis of a daptomycin-susceptible enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob Agents Chemother. 2013;57:261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Munita JM, Tran TT, Diaz L, et al. A liaF codon deletion abolishes daptomycin bactericidal activity against vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 2013;57:2831–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Reyes J, Panesso D, Tran TT, et al. A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis. J Infect Dis. 2015;211(8):1317–25.

    Article  PubMed  Google Scholar 

  115. Palmer KL, Daniel A, Hardy C, et al. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother. 2011;55:3345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tran TT, Panesso D, Mishra NN, et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio. 2013;4:e00281–313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Diaz L, Tran TT, Munita JM, et al. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrob Agents Chemother. 2014;58:4527–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Steed ME, Vidaillac C, Rose WE, et al. Characterizing vancomycin-resistant Enterococcus strains with various mechanisms of daptomycin resistance developed in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2011;55:4748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hall Snyder A, Werth BJ, Barber KE, et al. Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. J Antimicrob Chemother. 2014;69:2148–54.

    Article  CAS  PubMed  Google Scholar 

  120. Munita JM, Panesso D, Diaz L, et al. Correlation between mutations in liaFSR of Enterococcus faecium and MIC of daptomycin: revisiting daptomycin breakpoints. Antimicrob Agents Chemother. 2012;56:4354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sakoulas G, Nonejuie P, Nizet V, et al. Treatment of high-level gentamicin-resistant Enterococcus faecalis endocarditis with daptomycin plus ceftaroline. Antimicrob Agents Chemother. 2013;57:4042–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sakoulas G, Bayer AS, Pogliano J, et al. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2012;56:838–44.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Smith JR, Barber KE, Raut A, Aboutaleb M, Sakoulas G, Rybak MJ. Beta-lactam combinations with daptomycin provide synergy against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2015;70(6):1738–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sakoulas G, Rose W, Nonejuie P, et al. Ceftaroline restores daptomycin activity against daptomycin-nonsusceptible vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2014;58:1494–500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Werth BJ, Barber KE, Tran KN, et al. Ceftobiprole and ampicillin increase daptomycin susceptibility of daptomycin-susceptible and -resistant VRE. J Antimicrob Chemother. 2015;70(2):489–93.

    Article  CAS  PubMed  Google Scholar 

  126. Henry X, Verlaine O, Amoroso A, et al. Activity of ceftaroline against Enterococcus faecium PBP5. Antimicrob Agents Chemother. 2013;57:6358–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhanel GG, Calic D, Schweizer F, et al. New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs. 2010;70:859–86.

    Article  CAS  PubMed  Google Scholar 

  128. Crank CW, Scheetz MH, Brielmaier B, et al. Comparison of outcomes from daptomycin or linezolid treatment for vancomycin-resistant enterococcal bloodstream infection: a retrospective, multicenter, cohort study. Clin Ther. 2010;32:1713–9.

    Article  CAS  PubMed  Google Scholar 

  129. Whang DW, Miller LG, Partain NM, et al. Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections. Antimicrob Agents Chemother. 2013;57:5013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Balli EP, Venetis CA, Miyakis S. Systematic review and meta-analysis of linezolid versus daptomycin for treatment of vancomycin-resistant enterococcal bacteremia. Antimicrob Agents Chemother. 2014;58:734–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mendes RE, Woosley LN, Farrell DJ, et al. Oritavancin activity against vancomycin-susceptible and vancomycin-resistant Enterococci with molecularly characterized glycopeptide resistance genes recovered from bacteremic patients, 2009–2010. Antimicrob Agents Chemother. 2012;56:1639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karlowsky JA, Walkty AJ, Baxter MR, et al. In vitro activity of oritavancin against Gram-positive pathogens isolated in Canadian hospital laboratories from 2011 to 2013. Diagn Microbiol Infect Dis. 2014;80:311–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smith, J.R., Claeys, K.C., Zasowski, E.J., Yim, J., Rybak, M.J. (2017). Daptomycin Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_21

Download citation

Publish with us

Policies and ethics