Skip to main content

Evolutionary Biology of Drug Resistance

  • Chapter
  • First Online:
Antimicrobial Drug Resistance

Abstract

It widely upheld that evolution is the result of two essential forces: variability (chance) and selection (necessity). This assumption is confirmed by a number of simple phenomena in antibiotic resistance. Variability is created by random Mutation (also recombination), and some of these variants (for instance, those with a mutation in the antibiotic target) become resistant. These variants are selected by antibiotic use and consequently they increase the frequency of resistance. If we increase variability (as in a hyper-mutable strain) or the intensity of selection (antibiotic hyper-consumption), the result is more resistance. This is true, but not the whole truth. Most determinants of antibiotic resistance are not based on simple mutations, but rather on sophisticated systems frequently involving several genes and sequences; moreover, resistance mutations are seldom transmitted by lateral gene transfer. The acquisition of any type of resistance produces a change. In biology, any change is not only an opportunity, but is also a risk for evolution. Bacterial organisms are highly integrated functional structures, exquisitely tuned by evolutionary forces to fit with their environments. Beyond the threshold of the normal compliance of these functions, changes are expected to disturb the equilibrium. Therefore, the acquisition of resistance is not sufficient to survive; evolution should also shape and refine the way of managing resistance determinants. Under the perspective of systems biology, this biological dilemma is presented as “evolvability versus robustness”, where only robust systems (able to tolerate a wide range of external changes) survive, but in the long term they should reorganize their compositional network so that they can address new and unexpected external changes. In fact, we can expect a constant cycle between robustness and evolvability in antibiotic resistance, which is manifested by changes in the frequency of some particular resistant clones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell G. Selection, the mechanism of evolution. New York: Chapman & Hall; 1997.

    Google Scholar 

  2. Olivares J, Bernardini A, Garcia-Leon G, Corona FB, Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol. 2013;4:103.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martínez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.

    Article  PubMed  CAS  Google Scholar 

  4. Galán JC, González-Candelas F, Rolain JM, Cantón R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: from the resistome to genetic plasticity in the β-lactamases world. Front Microbiol. 2013;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Linares JF, Gustafsson I, Baquero F, Martinez JL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A. 2006;103:19484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantón R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011;35:977–91.

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436:1171–5.

    Article  CAS  PubMed  Google Scholar 

  8. Baquero F. Evolution and the nature of time. Int Microbiol. 2005;8:81–91.

    PubMed  Google Scholar 

  9. Morosini MI, Cantón R. Tolerance and heteroresistance in Gram-positive microorganisms. Med Clin (Barc). 2010;135 Suppl 3:16–22.

    Article  Google Scholar 

  10. Wiuff C, Zappala RM, Regoes RR, Garner KN, Baquero F, Levin BR. Phenotypic tolerance: antibiotic enrichment of non-inherited resistance in bacterial populations. Antimicrob Agents Chemother. 2005;49:1483–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kussell E, Kishony R, Balaban NQ, Leibler S. Bacterial persistence: a model of survival in changing environments. Genetics. 2005;169:1807–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Germain E, Roghanian M, Gerdes K, Maissoneuve E. Stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci U S A. 2015;112:5171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levin BR, Rozen DE. Non-inherited antibiotic resistance. Nat Rev Microbiol. 2006;4:556–62.

    Article  CAS  PubMed  Google Scholar 

  14. Gould SJ, Vrba S. Exaptation—a missing term in the science of form. Paleobiology. 1982;8:4–15.

    Article  Google Scholar 

  15. Gould SJ, Lloyd EA. Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci U S A. 1999;96:11904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torres C, Perlin MH, Baquero F, Lerner DL, Lerner SA. High-level amikacin resistance in Pseudomonas aeruginosa associated with a 3′-phosphotransferase with high affinity for amikacin. Int J Antimicrob Agents. 2000;15:257–63.

    Article  CAS  PubMed  Google Scholar 

  17. Gould SJ. In: Gould SJ, editor. The structure of evolutionary theory. Cambridge, MA/London: The Belknap Press of Harvard University Press; 2002.

    Google Scholar 

  18. Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science. 2009;325:1128–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Charpentier E, Courvalin P. Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother. 1999;43:2103–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Edwards R, Read PN. Expression of the carbapenemase gene (cfiA) in Bacteroides fragilis. J Antimicrob Chemother. 2000;46:1009–12.

    Article  CAS  PubMed  Google Scholar 

  21. Gudeta DD, Bortolaia V, Amos G, Wellington EM, Brandt KK, Poirel L, Nielsen JB, Westh H, Guardabassi L. The soil microbiota harbors a diversity of carbapenem-hydrolyzing ß-Lactamases of potential clinical relevance. Antimicrob Agents Chemother. 2015. pii: AAC.01924-15 [Epub ahead of print].

    Google Scholar 

  22. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12:83–8.

    Article  CAS  PubMed  Google Scholar 

  23. Hernández A, Sánchez MB, Martínez JL. Quinolone resistance: much more than predicted. Front Microbiol. 2011;2:22.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Witek MA, Conn GL. Expansion of the aminoglycoside-resistance 16S rRNA (m(1)A1408) methyltransferase family: expression and functional characterization of four hypothetical enzymes of diverse bacterial origin. Biochim Biophys Acta. 2014;1844:1648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sieradzki K, Tomasz A. A highly vancomycin-resistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol Lett. 1996;142:161–6.

    Article  CAS  PubMed  Google Scholar 

  26. Martinez JL. General principles of antibiotic resistance in bacteria. Tackling antibiotic resistance: the environmental framework. Drug Discov Today Technol. 2014;11:33–9.

    Article  PubMed  Google Scholar 

  27. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.

    Article  CAS  PubMed  Google Scholar 

  28. Cantón R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect. 2009;15 Suppl 1:20–5.

    Article  PubMed  CAS  Google Scholar 

  29. D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.

    Article  PubMed  Google Scholar 

  30. Wiener P, Tuljapurkar S. Migration in variable environments: exploring life-history evolution using structured population models. J Theor Biol. 1994;166:75–90.

    Article  CAS  PubMed  Google Scholar 

  31. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264:375–82.

    Article  CAS  PubMed  Google Scholar 

  32. Finley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, Reid-Smith R, Timinouni M, Graham DW, Topp E. The scourge of antibiotic resistance: the important role of the environment. Clin Infect Dis. 2013;57:704–10.

    Article  PubMed  Google Scholar 

  33. Travis DA, Sriramarao P, Cardona C, Steer CJ, Kennedy S, Sreevatsan S, Murtaugh MP. One medicine one science: a framework for exploring challenges at the intersection of animals, humans, and the environment. Ann N Y Acad Sci. 2014;1334:26–44.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Massova I, Mobashery S. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr Pharm Des. 1999;5:929–37.

    CAS  PubMed  Google Scholar 

  35. Aharonowitz Y, Cohen G, Martín JF. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol. 1992;46:461–95.

    Article  CAS  PubMed  Google Scholar 

  36. Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother. 1998;42:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelly JA, Dideberg O, Charlier P, Wery JP, Libert M, Moews PC, Knox JR, Duez C, Fraipont C, Joris B, et al. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science. 1986;231:1429–31.

    Article  CAS  PubMed  Google Scholar 

  38. Gherman BF, Goldberg SD, Cornish VW, Friesner RA. Mixed quantum mechanical/molecular mechanical (QM/MM) study of the deacylation reaction in a penicillin binding protein (PBP) versus in a class C beta-lactamase. J Am Chem Soc. 2004;126:7652–64.

    Article  CAS  PubMed  Google Scholar 

  39. Medeiros AA. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis. 1997;24:S19–45.

    Article  CAS  PubMed  Google Scholar 

  40. Martínez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 2011;35:768–89.

    Article  PubMed  CAS  Google Scholar 

  41. Wolf DM, Arkin AP. Motifs, modules and games in bacteria. Curr Opin Microbiol. 2003;6:125–34.

    Article  CAS  PubMed  Google Scholar 

  42. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–9.

    Article  CAS  PubMed  Google Scholar 

  43. Greenway DL, England RR. The intrinsic resistance of Escherichia coli to various antimicrobial agents requires ppGpp and sigma s. Lett Appl Microbiol. 1999;29:323–6.

    Article  CAS  PubMed  Google Scholar 

  44. Cao M, Wang T, Ye R, Helmann JD. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma (W) and sigma (M) regulons. Mol Microbiol. 2002;45:1267–76.

    Article  CAS  PubMed  Google Scholar 

  45. Bandow JE, Brotz H, Hecker M. Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. J Bacteriol. 2002;184:459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol. 1999;34:305–16.

    Article  CAS  PubMed  Google Scholar 

  47. Powell JK, Young KD. Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins. J Bacteriol. 1991;173:4021–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1578–9.

    Article  CAS  Google Scholar 

  49. Blázquez J, Gómez-Gómez JM, Oliver A, Juan C, Kapur V, Martín S. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Mol Microbiol. 2006;62:84–99.

    Article  PubMed  CAS  Google Scholar 

  50. Foster PL, Lee H, Popodi E, Townes JP, Tang H. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A. 2015;112:E5990–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Selander RK, Levin BR. Genetic diversity and structure in Escherichia coli populations. Science. 1980;210:545–7.

    Article  CAS  PubMed  Google Scholar 

  52. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, Harding CL, Radey MC, Rezayat A, Bautista G, Berrington WR, Goddard AF, Zheng C, Angermeyer A, Brittnacher MJ, Kitzman J, Shendure J, Fligner CL, Mittler J, Aitken ML, Manoil C, Bruce JE, Yahr TL, Singh PK. Regional isolation drives bacterial diversification within cystic fibrosis. Lungs Cell Host Microbe. 2015;18:307–19.

    Article  CAS  PubMed  Google Scholar 

  53. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000;288:1251–4.

    Article  CAS  PubMed  Google Scholar 

  54. Román F, Cantón R, Perez-Vazquez M, Baquero F, Campos J. Dynamics of long-term colonization of respiratory tract by Haemophilus influenzae in cystic fibrosis patients shows a marked increase in hypermutable strains. J Clin Microbiol. 2004;42:1450–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis. 2003;187:1709–16.

    Article  CAS  PubMed  Google Scholar 

  56. del Campo R, Morosini MI, de la Pedrosa EG, Fenoll A, Muñoz-Almagro C, Maiz L, Baquero F, Cantón R. Spanish Pneumococcal Infection Study Network. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J Clin Microbiol. 2005;43:2207–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Baquero MR, Nilsson AI, del Carmen Turrientes M, Sandvang D, Galán JC, Martinez JL, Frimodt-Moller N, Baquero F, Andersson DI. Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates. J Bacteriol. 2004;186:5538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science. 2001;291:2606–8.

    Article  CAS  PubMed  Google Scholar 

  59. Shaver AC, Dombrowski PG, Sweeney JY, Treis T, Zappala RM, Sniegowski PD. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics. 2002;162:557–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Turrientes M-C, Baquero F, Levin BR, Martínez J-L, Ripoll A, González-Alba J-M, Tobes R, Manrique M, Baquero MR, Rodríguez-Domínguez MJ, Cantón R, Galán JC. Normal mutation rate variants arise in a mutator (Mut S) Escherichia coli population. PLoS ONE. 2013;8, e72963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chao L, Cox EC. Competition between high and low mutating strains of Echerichia coli. Evolution. 1983;37:125.

    Article  PubMed  Google Scholar 

  62. Baquero MR, Galán JC, del Carmen Turrientes M, Cantón R, Coque TM, Martinez JL, Baquero F. Increased mutation frequencies in Escherichia coli isolates harboring extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2005;49:4754–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saxer G, Krepps MD, Merkley ED, Ansong C, Deatherage Kasier BL, Valovska M-T, Ristic N, Yeh PT, Prakash VP, Leiser OP, Nahleh L, Gibbons HS, Kreuzr HW, Shamoo Y. Mutations in global regulators lead to metabolic selection during adaptation to complex environments. PLoS Genet. 2014;10(12), e1004872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Miller K, O’Neill AJ, Chopra I. Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes. J Antimicrob Chemother. 2002;49:925–34.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev. 2002;15:647–79.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tanaka MM, Bergstrom CT, Levin BR. The evolution of mutator genes in bacterial populations: the roles of environmental change and timing. Genetics. 2003;164:843–54.

    PubMed  PubMed Central  Google Scholar 

  67. Miller K, O’Neill AJ, Chopra I. Escherichia coli mutators present an enhanced risk for emergence of antibiotic resistance during urinary tract infections. Antimicrob Agents Chemother. 2004;48:23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pérez-Capilla T, Baquero MR, Gómez-Gómez JM, Ionel A, Martín S, Blázquez J. SOS-independent induction of dinB transcription by beta-lactam-mediated inhibition of cell wall synthesis in Escherichia coli. J Bacteriol. 2005;187:1515–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Baquero F, Blázquez J. Evolution of antibiotic resistance. Trends Ecol Evol. 1997;12:482–7.

    Article  CAS  PubMed  Google Scholar 

  70. Balashov S, Humayun MZ. Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells. J Mol Biol. 2002;315:513–27.

    Article  CAS  PubMed  Google Scholar 

  71. Phillips I, Culebras E, Moreno F, Baquero F. Induction of the SOS response by new 4-quinolones. J Antimicrob Chemother. 1987;20:631–8.

    Article  CAS  PubMed  Google Scholar 

  72. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science. 2004;305:1629–31.

    Article  CAS  PubMed  Google Scholar 

  73. Santoyo G, Romero D. Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev. 2005;29:169–83.

    Article  CAS  PubMed  Google Scholar 

  74. Prammananan T, Sander P, Springer B, Bottger EC. RecA-mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA. Antimicrob Agents Chemother. 1999;43:447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andersson DI, Jerlström-Hultqvist J, Näsvall J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb Perspect Biol. 2015;7(6):a017996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Andersson DI, Hughes D. Gene amplification and adaptive evolution in bacteria. Annu Rev Genet. 2009;43:167–95.

    Article  CAS  PubMed  Google Scholar 

  77. Andersson DI, Hughes D, Roth JR. The origin of mutants under selection: interactions of mutation, growth, and selection. Ecosal Plus. 2011;4(2).

    Google Scholar 

  78. Sandegren L, Andersson DI. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol. 2009;7:578–88.

    Article  CAS  PubMed  Google Scholar 

  79. Adler M, Anjum M, Berg OG, Andersson DI, Sandegren L. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms. Mol Biol Evol. 2014;31:1526–35.

    Article  CAS  PubMed  Google Scholar 

  80. Maisnier-Patin S, Roth JR. The origin of mutants under selection: how natural selection mimics mutagenesis (adaptive mutation). Cold Spring Harb Perspect Biol. 2015;7:a018176.

    Article  PubMed  CAS  Google Scholar 

  81. Woegerbauer M, Kuffner M, Domingues S, Nielsen KM. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front Microbiol. 2015;6:442.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Barile S, Devirgiliism C, Perozzim G. Molecular characterization of a novel mosaic tet(S/M) gene encoding tetracycline resistance in foodborne strains of Streptococcus bovis. Microbiology. 2012;158(Pt 9):2353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pereira-Leal JB, Levy ED, Teichmann SA. The origins and evolution of functional modules: lessons from protein complexes. Philos Trans R Soc Lond B Biol Sci. 2006;361:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bapteste E, Lopez P, Bouchard F, Baquero F, McInerney JO, Burian RM. Evolutionary analyses of non-genealogical bonds produced by introgressive descent. Proc Natl Acad Sci. 2012;109(45):18266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466–75.

    Article  PubMed  CAS  Google Scholar 

  86. Lartigue MF, Poirel L, Aubert D, Nordmann P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene bla CTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother. 2006;50:1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Poirel L, Decousse JW, Nordmann P. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother. 2003;47:2938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70:296–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aubert D, Naas T, Heritier C, Poirel L, Nordmann P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. J Bacteriol. 2006;188:6506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Force A, Cresko WA, Pickett FB, Proulx SR, Amemiya C, Lynch M. The origin of subfunctions and modular gene regulation. Genetics. 2005;170:433–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baquero F. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol. 2004;2:510–8.

    Article  CAS  PubMed  Google Scholar 

  92. Rodríguez I, Novais Â, Lira F, Valverde A, Curião T, Martínez JL, Baquero F, Cantón R, Coque TM. Antibiotic-resistant Klebsiella pneumoniae and Escherichia coli high-risk clones and an IncFII(k) mosaic plasmid hosting Tn1 (blaTEM-4) in isolates from 1990 to 2004. Antimicrob Agents Chemother. 2015;59:2904–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Partridge SR, Hall RM. Complex multiple antibiotic and mercury resistance region derived from the r-det of NR1 (R100). Antimicrob Agents Chemother. 2004;48:4250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35:820–55.

    Article  CAS  PubMed  Google Scholar 

  95. Partridge SR, Iredell JR. Genetic contexts of blaNDM-1. Antimicrob Agents Chemother. 2012;56:6065–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Toleman MA, Walsh TR. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35:912–35.

    Article  CAS  PubMed  Google Scholar 

  97. Jackson RW, Vinatzer B, Arnold DL, Dorus S, Murillo J. The influence of the accessory genome on bacterial pathogen evolution. Mob Genet Elem. 2011;1:55–65.

    Article  Google Scholar 

  98. Baquero F, Tobes R. Bloody coli: a gene cocktail in Escherichia coli O104:H4. MBio. 2013;4:e00066–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Petty NK, Ben Zakour NL, Stanton-Cookm M, Skippington E, Totsika M, Forde BM, Phan MD, Gomes Moriel D, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Baño J, Pascual A, Pitout JD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA. Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A. 2014;111:5694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Potron A, Poirel L, Nordmann P. Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48. Antimicrob Agents Chemother. 2014;58:467–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Souza V, Eguiarte LE. Bacteria gone native vs. bacteria gone awry? Plasmidic transfer and bacterial evolution. Proc Natl Acad Sci U S A. 1997;94:5501–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.

    Article  CAS  PubMed  Google Scholar 

  104. Alvarado A, Garcillán-Barcia MP, de la Cruz F. A degenerate primer MOB typing (DPMT) method to classify gamma-proteobacterial plasmids in clinical and environmental settings. PLoS ONE. 2012;7, e40438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet. 2014;10, e1004766.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev. 2011;35:707–35.

    Article  CAS  PubMed  Google Scholar 

  107. Lanza VF, Tedim AP, Martínez JL, Baquero F, Coque TM. The Plasmidome of Firmicutes: Impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr. 2015;3:PLAS-0039-2014.

    Google Scholar 

  108. Bennett PM. Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol Biol. 2004;266:71–113.

    CAS  PubMed  Google Scholar 

  109. Rice LB. Association of different mobile elements to generate novel integrative elements. Cell Mol Life Sci. 2002;59:2023–32.

    Article  CAS  PubMed  Google Scholar 

  110. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev. 1999;63:507–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Rowe-Magnus AD, Davies J, Mazel D. Impact of integrons and transposons on the evolution of resistance and virulence. Curr Top Microbiol Immunol. 2002;264:167–88.

    CAS  PubMed  Google Scholar 

  112. Fluit AC, Schmitz FJ. Resistance integrons and super-integrons. Clin Microbiol Infect. 2004;10:272–88.

    Article  CAS  PubMed  Google Scholar 

  113. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo- ß-lactamases: the quiet before the storm? Clin Microbiol Rev. 2005;18:306–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Oliver A, Coque TM, Alonso D, Valverde A, Baquero F, Cantón R. CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. Antimicrob Agents Chemother. 2005;49:1567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pozzi G, Iannelli F, Oggioni MR, Santagati M, Stefani S. Genetic elements carrying macrolide efflux genes in streptococci. Curr Drug Targets Infect Disord. 2004;4:203–6.

    Article  CAS  PubMed  Google Scholar 

  116. Shousha A, Awaiwanont N, Sofka D, Smulders FJ, Paulsen P, Szostak MP, Humphrey T, Hilbert F. Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. Appl Environ Microbiol. 2015;81:4600–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:1518–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJ. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol. 2006;44:2220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cohen ML. Antimicrobial resistance: prognosis for public health. Trends Microbiol. 1994;2:422–5.

    Article  CAS  PubMed  Google Scholar 

  120. Shurin JB, Amarasekare P, Chase JM, Holt RD, Hoopes MF, Leibold MA. Alternative stable states and regional community structure. J Theor Biol. 2004;227:359–68.

    Article  PubMed  Google Scholar 

  121. Jutersek B, Baraniak A, Zohar-Cretnik T, Storman A, Sadowy E, Gniadkowski M. Complex endemic situation regarding extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a hospital in Slovenia. Microb Drug Resist. 2003;9 Suppl 1:S25–33.

    Article  CAS  PubMed  Google Scholar 

  122. Baquero F, Coque TM, Cantón R. Allodemics. Lancet Infect Dis. 2002;2:591–2.

    Article  PubMed  Google Scholar 

  123. Cantón R, Coque TM, Baquero F. Multi-resistant Gram-negative bacilli: from epidemics to endemics. Curr Opin Infect Dis. 2003;16:315–25.

    Article  PubMed  Google Scholar 

  124. Friesen ML, Saxer G, Travisano M, Doebeli M. Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution. 2004;58:245–60.

    Article  PubMed  Google Scholar 

  125. Shapiro JA. Natural genetic engineering in evolution. Genetica. 1992;86:99–111.

    Article  CAS  PubMed  Google Scholar 

  126. Mittler JE, Lenski RE. New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis. Nature. 1990;344:173–5.

    Article  CAS  PubMed  Google Scholar 

  127. Lenski RE, Sniegowski PD. “Adaptive mutation”: the debate goes on. Science. 1995;269:285–8.

    Article  CAS  PubMed  Google Scholar 

  128. Higashitani N, Higashitani A, Horiuchi K. SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J Bacteriol. 1995;177:3610–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thomas A, Tocher J, Edwards DI. Electrochemical characteristics of five quinolone drugs and their effect on DNA damage and repair in Escherichia coli. J Antimicrob Chemother. 1990;25:733–44.

    Article  CAS  PubMed  Google Scholar 

  130. DeMarini DM, Lawrence BK. Prophage induction by DNA topoisomerase II poisons and reactive-oxygen species: role of DNA breaks. Mutat Res. 1992;267:1–17.

    Article  CAS  PubMed  Google Scholar 

  131. Beabout K, Hammerstrom TG, Wang TT, Bhatty M, Christie PJ, Saxer G, Shamoo Y. Rampant parasexuality evolves in a hospital pathogen during antibiotic selection. Mol Biol Evol. 2015;32:2585–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penades JR. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol. 2005;56:836–44.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, Acheson DW. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis. 2000;181:664–70.

    Article  CAS  PubMed  Google Scholar 

  134. Goerke C, y Papenberg SM, Dasbach S, Dietz K, Ziebach R, Kahl BC, Wolz C. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J Infect Dis. 2004;189:724–34.

    Article  CAS  PubMed  Google Scholar 

  135. Goerke C, Koller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vakulenko SB, Golemi D, Geryk B, Suvorov M, Knox JR, Mobashery S, Lerner SA. Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 beta-lactamase confers increased MIC of cefepime. Antimicrob Agents Chemother. 2002;46:1966–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baldwin JM. A new factor in evolution. Am Naturalist. 1896;30:441–51.

    Article  Google Scholar 

  138. Aertsen A, Michiels CW. Diversify or die: generation of diversity in response to stress. Crit Rev Microbiol. 2005;31:69–78.

    Article  PubMed  Google Scholar 

  139. Smith JM, Hoekstra R. Polymorphism in a varied environment: how robust are the models? Genet Res. 1980;35:45–57.

    Article  CAS  PubMed  Google Scholar 

  140. Baquero F, Negri MC. Selective compartments for resistant microorganisms in antibiotic gradients. Bioessays. 1997;19:731–6.

    Article  CAS  PubMed  Google Scholar 

  141. Negri MC, Lipsitch M, Blázquez J, Levin BR, Baquero F. Concentration-dependent selection of small phenotypic differences in TEM-beta-lactamase-mediated antibiotic resistance. Antimicrob Agents Chemother. 2000;44:2485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12:465–78.

    Article  CAS  PubMed  Google Scholar 

  143. Hughes D, Andersson DI. Selection of resistance at lethal and non-lethal antibiotic concentrations. Curr Opin Microbiol. 2012;15:555–60.

    Article  CAS  PubMed  Google Scholar 

  144. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003;52:11–7.

    Article  CAS  PubMed  Google Scholar 

  145. Alekshun MN, Levy SB. Commensals upon us. Biochem Pharmacol. 2006;71:893–900.

    Article  CAS  PubMed  Google Scholar 

  146. Enne VI, Livermore DM, Stephens P, Hall LM. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet. 2001;357:1325–8.

    Article  CAS  PubMed  Google Scholar 

  147. Baquero F. Genetic hyper-codes and multidimensional Darwinism: replication modes and codes in evolutionary individuals of the bacterial world. In: Trueba G, editor. Why does evolution matter? . Newcastle upon Tyne, UK: Cambridge Scholars Publishing; 2014. p. 165–80.

    Google Scholar 

  148. Brosius J, Gould SJ. On genonomenclature: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci U S A. 1992;89:10706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;6:4:15.

    Google Scholar 

  150. Stebbins GL, Hartl DL. Comparative evolution: latent potentials for anagenetic advance. Proc Natl Acad Sci U S A. 1998;85:5141–5.

    Article  Google Scholar 

  151. Piddock LJ. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. 2006;4:629–36.

    Article  CAS  PubMed  Google Scholar 

  152. Andersson DI. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol. 2006;9:461–5.

    Article  CAS  PubMed  Google Scholar 

  153. Levin BR, Lipsitch M, Perrot V, Schrag S, Antia R, Simonsen L, Walker NM, Stewart FM. The population genetics of antibiotic resistance. Clin Infect Dis. 1997;24 Suppl 1:S9–16.

    Article  PubMed  Google Scholar 

  154. Lenski RE, Souza V, Duong LP, Phan QG, Nguyen TN, Bertrand KP. Epistatic effects of promoter and repressor functions of the Tn10 tetracycline-resistance operon of the fitness of Escherichia coli. Mol Ecol. 1994;3:127–35.

    Article  CAS  PubMed  Google Scholar 

  155. Blot M, Hauer B, Monnet G. The Tn5 bleomycin resistance gene confers improved survival and growth advantage on Escherichia coli. Mol Gen Genet. 1994;242:595–601.

    Article  CAS  PubMed  Google Scholar 

  156. Davies J. Another look at antibiotic resistance. J Gen Microbiol. 1992;138:1553–9.

    Article  CAS  PubMed  Google Scholar 

  157. Coque TM, Willems RJ, Fortún J, Top J, Diz S, Loza E, Cantón R, Baquero F. Population structure of Enterococcus faecium causing bacteremia in a Spanish university hospital: setting the scene for a future increase in vancomycin resistance? Antimicrob Agents Chemother. 2005;49:2693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis. 2005;11:82182–8.

    Article  Google Scholar 

  159. del Campo R, Cafini F, Morosini MI, Fenoll A, Linares J, Alou L, Sevillano D, Cantón R, Prieto J, Baquero F, Spanish Pneumococcal Network (G3/103). Combinations of PBPs and MurM protein variants in early and contemporary high-level penicillin-resistant Streptococcus pneumoniae isolates in Spain. J Antimicrob Chemother. 2006;57:983–6.

    Article  PubMed  Google Scholar 

  160. Ruiz-Garbajosa P, Cantón R, Pintado V, Coque TM, Willems R, Baquero F, del Campo R. Genetic and phenotypic differences among Enterococcus faecalis clones from intestinal colonisation and invasive disease. Clin Microbiol Infect. 2006;12:1193–8.

    Article  CAS  PubMed  Google Scholar 

  161. Gomes AR, Westh H, de Lencastre H. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob Agents Chemother. 2006;50:3237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.

    Article  CAS  PubMed  Google Scholar 

  163. Jain R, Rivera MC, Moore JE, Lake JA. Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol. 2003;20:1598–602.

    Article  CAS  PubMed  Google Scholar 

  164. Madan Babu M, Teichmann SA, Aravind L. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J Mol Biol. 2006;358:614–33.

    Article  CAS  PubMed  Google Scholar 

  165. Lanza VF, Tedimm AP, Martínez JL, Baquero F, Coque TM. The plasmidome of Firmicutes: Impact on the emergence and the spread of resistance to antimicrobials. Microbiol Spectr. 2015;3:PLAS-0039-2014.

    Google Scholar 

  166. Stegger M, Wirth T, Andersen PS, Skov RL, De Grassi A, Simões PM, Tristan A, Petersen A, Aziz M, Kiil K, Cirković I, Udo EE, del Campo R, Vuopio-Varkila J, Ahmad N, Tokajian S, Peters G, Schaumburg F, Olsson-Liljequist B, Givskov M, Driebe EE, Vigh HE, Shittu A, Ramdani-Bougessa N, Rasigade JP, Price LB, Vandenesch F, Larsen AR, Laurent F. Origin and evolution of European community-acquired methicillin-resistant Staphylococcus aureus. MBio. 2014;5:e01044–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Xue H, Cordero OX, Camas FM, Trimble W, Meyer F, Guglielmini J, Rocha EP, Polz MF. Eco-evolutionary dynamics of episomes among ecologically cohesive bacterial populations. MBio. 2015;6:e00552–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Novais A, Viana D, Baquero F, Martínez-Botas J, Cantón R, Coque TM. Contribution of IncFII and broad-host IncA/C and IncN plasmids to the local expansion and diversification of phylogroup B2 Escherichia coli ST131 clones carrying blaCTX-M-15 and qnrS1 genes. Antimicrob Agents Chemother. 2012;56:2763–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrobial Agents Chemother. 2011;55:3649–60.

    Article  CAS  Google Scholar 

  170. Baquero F, Coque TM, Cantón R. Counteracting antibiotic resistance: breaking barriers among antibacterial strategies. Expert Opin Ther Targets. 2014;18:851–61.

    Article  CAS  PubMed  Google Scholar 

  171. Martínez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala J Medical Sci. 2014;119:68–77.

    Article  Google Scholar 

  172. von Mering C, Zdobnov EM, Tsoka S, Ciccarelli FD, Pereira-Leal JB, Ouzounis CA, Bork P. Genome evolution reveals biochemical networks and functional modules. Proc Natl Acad Sci U S A. 2003;100:15428–33.

    Article  CAS  Google Scholar 

  173. Ettema T, van der Oost J, Huynen M. Modularity in the gain and loss of genes: applications for function prediction. Trends Genet. 2001;17:485–7.

    Article  CAS  PubMed  Google Scholar 

  174. Lenski RE, Ofria C, Pennock RT, Adami C. The evolutionary origin of complex features. Nature. 2003;423:139–44.

    Article  CAS  PubMed  Google Scholar 

  175. Petri R, Schmidt-Dannert C. Dealing with complexity: evolutionary engineering and genome shuffling. Curr Opin Biotechnol. 2004;15:298–304.

    Article  CAS  PubMed  Google Scholar 

  176. Shapiro JA. A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering. Gene. 2005;345:91–100.

    Article  CAS  PubMed  Google Scholar 

  177. Pepper JW. The evolution of evolvability in genetic linkage patterns. Biosystems. 2003;69:115–26.

    Article  CAS  PubMed  Google Scholar 

  178. Cantón R, Morosini I, Loza E, Morosini I, Baquero F. Mecanismos de multirresistencia e importancia actual en microorganismos grampositivos y gramnegativos. Enf Infec Microbiol Clin. 2006;5:3–16.

    Google Scholar 

  179. Walsh TR. Combinatorial genetic evolution of multiresistance. Curr Opin Microbiol. 2006;9:476–82.

    Article  CAS  PubMed  Google Scholar 

  180. Rogozin IB, Makarova KS, Wolf YI, Koonin EV. Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Brief Bioinform. 2004;5:131–49.

    Article  CAS  PubMed  Google Scholar 

  181. Toussaint A, Merlin C. Mobile elements as a combination of functional modules. Plasmid. 2002;47:26–35.

    Article  CAS  PubMed  Google Scholar 

  182. de Lorenzo V. From the selfish gene to selfish metabolism: revisiting the central dogma. Bioessays. 2014;36:226–35.

    Article  PubMed  CAS  Google Scholar 

  183. Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl. 2015;8:223–39.

    Article  CAS  PubMed  Google Scholar 

  184. Brent R, Bruck J. Can computers help to understand biology? Nature. 2006;440:416–7.

    Article  CAS  PubMed  Google Scholar 

  185. Stadler BM, Stadler PF, Wagner GP, Fontana W. The topology of the possible: formal spaces underlying patterns of evolutionary change. J Theor Biol. 2001;213:241–74.

    Article  CAS  PubMed  Google Scholar 

  186. Andrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol. 2006;2:2006–28.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Danchin A. The bag or the spindle: the cell factory at the time of system’s biology. Microb Cell Fact. 2004;3:13–4.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Campos, M., Llorens, C., Sempere, J.M., Futami, R., Rodríguez, I., Carrasco, P., Capilla, R., Latorre, A., Coque, T.M., Moya, A., Baquero, F. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biol Direct. 2015;10:41.

    Google Scholar 

Download references

Acknowledgements

To the group of people who daily shares our interest in evolutionary biology of antibiotic resistance, and in particular to José-Luis Martínez, Teresa Coque, Rosa del Campo, Juan-Carlos Galán, María-Isabel Morosini, and Patricia Ruiz-Garbajosa, some of whom have provided data for the present review. We acknowledge also to EU Commission and Innovative Medicine Initiative (IMI) for funding projects on this field (COBRA-LSHM-CT-2003-503335; DRESP-LSHM-CT-2005-018705, EAR-LSHM-CT-2005-518152 ACE-LSHM-CT-2006-037410, TROCAR- LSHM-CT-2008-223031, R-GNOSIS-FP7-HEALTH-F32011-282512, EVOTAR-FP7-HEALTH-2011-282004, MON4STRAT-FP7-HEALTH-2013-INNOVATION-1-602906-2, IMI-6-ENABLE-2014-115583-2, IMI-9-COMBATE-CARE-115620-2, IMI-11-iABC-115721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Baquero M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baquero, F., Cantón, R. (2017). Evolutionary Biology of Drug Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_2

Download citation

Publish with us

Policies and ethics