Skip to main content

Aminoglycosides: Mechanisms of Action and Resistance

  • Chapter
  • First Online:

Abstract

Aminoglycosides have been an important part of the antimicrobial armamentarium since their introduction into clinical use in the 1940s. The spectrum of activity, rapid bactericidal activity, and favorable chemical and pharmacokinetic properties of aminoglycosides make them a clinically useful class of drugs. Although the introduction of efficacious and less toxic agents such as the broad-spectrum β-lactam antimicrobials led to a shift away from the use of aminoglycosides, the recent emergence of multi- and extensively drug-resistant Gram-negative pathogens has led to renewed interest in the aminoglycoside class, including the development of new molecules with potent activity against otherwise highly resistant pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avent ML, Rogers BA, Cheng AC, Paterson DL. Current use of aminoglycosides: indications, pharmacokinetics and monitoring for toxicity. Intern Med J. 2011;41(6):441–9. doi:10.1111/j.1445-5994.2011.02452.x.

    Article  CAS  PubMed  Google Scholar 

  2. Jackson J, Chen C, Buising K. Aminoglycosides: how should we use them in the 21st century? Curr Opin Infect Dis. 2013;26(6):516–25. doi:10.1097/QCO.0000000000000012.

    Article  CAS  PubMed  Google Scholar 

  3. Silvestri L, van Saene HK, Milanese M, Gregori D, Gullo A. Selective decontamination of the digestive tract reduces bacterial bloodstream infection and mortality in critically ill patients. Systematic review of randomized, controlled trials. J Hosp Infect. 2007;65(3):187–203. doi:10.1016/j.jhin.2006.10.014.

    Article  CAS  PubMed  Google Scholar 

  4. Tascini C, Sbrana F, Flammini S, Tagliaferri E, Arena F, Leonildi A, Ciullo I, Amadori F, Di Paolo A, Ripoli A, Lewis R, Rossolini GM, Menichetti F, GENGUT Study Group. Oral gentamicin gut decontamination for prevention of KPC-producing Klebsiella pneumoniae infections: relevance of concomitant systemic antibiotic therapy. Antimicrob Agents Chemother. 2014;58(4):1972–6. doi:10.1128/AAC.02283-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ben Salah A, Ben Messaoud N, Guedri E, Zaatour A, Ben Alaya N, Bettaieb J, Gharbi A, Belhadj Hamida N, Boukthir A, Chlif S, Abdelhamid K, El Ahmadi Z, Louzir H, Mokni M, Morizot G, Buffet P, Smith PL, Kopydlowski KM, Kreishman-Deitrick M, Smith KS, Nielsen CJ, Ullman DR, Norwood JA, Thorne GD, McCarthy WF, Adams RC, Rice RM, Tang D, Berman J, Ransom J, Magill AJ, Grogl M. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. N Engl J Med. 2013;368(6):524–32. doi:10.1056/NEJMoa1202657.

    Article  CAS  PubMed  Google Scholar 

  6. Sundar S, Agrawal N, Arora R, Agarwal D, Rai M, Chakravarty J. Short-course paromomycin treatment of visceral leishmaniasis in India: 14-day vs 21-day treatment. Clin Infect Dis. 2009;49(6):914–8. doi:10.1086/605438.

    Article  CAS  PubMed  Google Scholar 

  7. Nicolau DP, Belliveau PP, Nightingale CH, Quintiliani R, Freeman CD. Implementation of a once-daily aminoglycoside program in a large community-teaching hospital. Hosp Pharm. 1995;30(8):674–6. 679–680.

    CAS  PubMed  Google Scholar 

  8. Drusano GL, Ambrose PG, Bhavnani SM, Bertino JS, Nafziger AN, Louie A. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis. 2007;45(6):753–60. doi:10.1086/520991.

    Article  CAS  PubMed  Google Scholar 

  9. Kotra LP, Haddad J, Mobashery S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother. 2000;44(12):3249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magnet S, Blanchard JS. Molecular insights into aminoglycoside action and resistance. Chem Rev. 2005;105(2):477–98. doi:10.1021/cr0301088.

    Article  CAS  PubMed  Google Scholar 

  11. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–71. doi:10.1016/j.drup.2010.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wachino J, Arakawa Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram-negative bacteria: an update. Drug Resist Updat. 2012;15(3):133–48. doi:10.1016/j.drup.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  13. Schlessinger D. Failure of aminoglycoside antibiotics to kill anaerobic, low-pH, and resistant cultures. Clin Microbiol Rev. 1988;1(1):54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hancock RE. Alterations in outer membrane permeability. Annu Rev Microbiol. 1984;38:237–64. doi:10.1146/annurev.mi.38.100184.001321.

    Article  CAS  PubMed  Google Scholar 

  15. Hancock RE, Farmer SW, Li ZS, Poole K. Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli. Antimicrob Agents Chemother. 1991;35(7):1309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hancock RE, Raffle VJ, Nicas TI. Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1981;19(5):777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bryan LE, Kowand SK, Van Den Elzen HM. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother. 1979;15(1):7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mates SM, Patel L, Kaback HR, Miller MH. Membrane potential in anaerobically growing Staphylococcus aureus and its relationship to gentamicin uptake. Antimicrob Agents Chemother. 1983;23(4):526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller MH, Edberg SC, Mandel LJ, Behar CF, Steigbigel NH. Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob Agents Chemother. 1980;18(5):722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davies J, Gorini L, Davis BD. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol Pharmacol. 1965;1(1):93–106.

    CAS  PubMed  Google Scholar 

  21. Davies J, Jones DS, Khorana HG. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol. 1966;18(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  22. Davis BD. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev. 1987;51(3):341–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Green R, Noller HF. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi:10.1146/annurev.biochem.66.1.679.

    Article  CAS  PubMed  Google Scholar 

  24. Moazed D, Noller HF. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989;342(6246):142–8. doi:10.1038/342142a0.

    Article  CAS  PubMed  Google Scholar 

  25. Karimi R, Ehrenberg M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem. 1994;226(2):355–60.

    Article  CAS  PubMed  Google Scholar 

  26. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000;407(6802):340–8. doi:10.1038/35030019.

    Article  CAS  PubMed  Google Scholar 

  27. Vicens Q, Westhof E. Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure. 2001;9(8):647–58.

    Article  CAS  PubMed  Google Scholar 

  28. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996;274(5291):1367–71.

    Article  CAS  PubMed  Google Scholar 

  29. Fourmy D, Recht MI, Puglisi JD. Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. J Mol Biol. 1998;277(2):347–62. doi:10.1006/jmbi.1997.1552.

    Article  CAS  PubMed  Google Scholar 

  30. Bilgin N, Ehrenberg M. Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J Mol Biol. 1994;235(3):813–24. doi:10.1006/jmbi.1994.1041.

    Article  CAS  PubMed  Google Scholar 

  31. Davies J, Davis BD. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J Biol Chem. 1968;243(12):3312–6.

    CAS  PubMed  Google Scholar 

  32. Lodmell JS, Dahlberg AE. A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science. 1997;277(5330):1262–7.

    Article  CAS  PubMed  Google Scholar 

  33. Puglisi JD, Blanchard SC, Green R. Approaching translation at atomic resolution. Nat Struct Biol. 2000;7(10):855–61. doi:10.1038/79603.

    Article  CAS  PubMed  Google Scholar 

  34. Roth H, Amos H, Davis BD. Purine nucleotide excretion by Escherichia coli in the presence of streptomycin. Biochim Biophys Acta. 1960;37:398–405.

    Article  CAS  PubMed  Google Scholar 

  35. Anand N, Davis BD. Damage by streptomycin to the cell membrane of Escherichia coli. Nature. 1960;185:22–3.

    Article  CAS  PubMed  Google Scholar 

  36. Dubin DT, Davis BD. The effect of streptomycin on potassium flux in Escherichia coli. Biochim Biophys Acta. 1961;52:400–2.

    Article  CAS  PubMed  Google Scholar 

  37. Busse HJ, Wöstmann C, Bakker EP. The bactericidal action of streptomycin: membrane permeabilization caused by the insertion of mistranslated proteins into the cytoplasmic membrane of Escherichia coli and subsequent caging of the antibiotic inside the cells due to degradation of these proteins. J Gen Microbiol. 1992;138(3):551–61.

    Article  CAS  PubMed  Google Scholar 

  38. Davis BD, Chen LL, Tai PC. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci U S A. 1986;83(16):6164–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nichols WW, Young SN. Respiration-dependent uptake of dihydrostreptomycin by Escherichia coli. Its irreversible nature and lack of evidence for a uniport process. Biochem J. 1985;228(2):505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810. doi:10.1016/j.cell.2007.06.049.

    Article  CAS  PubMed  Google Scholar 

  41. Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science. 2013;339(6124):1213–6. doi:10.1126/science.1232688.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339(6124):1210–3. doi:10.1126/science.1232751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, Ye JD, Pati M, Vercruysse M, Ralifo PS, Allison KR, Khalil AS, Ting AY, Walker GC, Collins JJ. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111(20):E2100–9. doi:10.1073/pnas.1401876111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang FC. Antibiotic and ROS linkage questioned. Nat Biotechnol. 2013;31(5):415–6. doi:10.1038/nbt.2574.

    Article  CAS  PubMed  Google Scholar 

  45. Lynch SR, Puglisi JD. Structural origins of aminoglycoside specificity for prokaryotic ribosomes. J Mol Biol. 2001;306(5):1037–58. doi:10.1006/jmbi.2000.4420.

    Article  CAS  PubMed  Google Scholar 

  46. Bercovier H, Kafri O, Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986;136(3):1136–41.

    Article  CAS  PubMed  Google Scholar 

  47. Schwartz JJ, Gazumyan A, Schwartz I. rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol. 1992;174(11):3757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Honoré N, Cole ST. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother. 1994;38(2):238–42.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Honoré N, Marchal G, Cole ST. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1995;39(3):769–70.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meier A, Kirschner P, Bange FC, Vogel U, Böttger EC. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother. 1994;38(2):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finken M, Kirschner P, Meier A, Wrede A, Böttger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993;9(6):1239–46.

    Article  CAS  PubMed  Google Scholar 

  52. Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem. 1996;65:215–39. doi:10.1146/annurev.bi.65.070196.001243.

    Article  CAS  PubMed  Google Scholar 

  53. Toivonen JM, Boocock MR, Jacobs HT. Modelling in Escherichia coli of mutations in mitoribosomal protein S12: novel mutant phenotypes of rpsL. Mol Microbiol. 1999;31(6):1735–46.

    Article  CAS  PubMed  Google Scholar 

  54. Allen PN, Noller HF. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. J Mol Biol. 1989;208(3):457–68.

    Article  CAS  PubMed  Google Scholar 

  55. Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, Böttger EC, Wallace RJ. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis. 1998;177(6):1573–81.

    Article  CAS  PubMed  Google Scholar 

  56. Björkman J, Samuelsson P, Andersson DI, Hughes D. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Mol Microbiol. 1999;31(1):53–8.

    Article  PubMed  Google Scholar 

  57. Criswell D, Tobiason VL, Lodmell JS, Samuels DS. Mutations conferring aminoglycoside and spectinomycin resistance in Borrelia burgdorferi. Antimicrob Agents Chemother. 2006;50(2):445–52. doi:10.1128/AAC.50.2.445-452.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beauclerk AA, Cundliffe E. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol. 1987;193(4):661–71.

    Article  CAS  PubMed  Google Scholar 

  59. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–33. doi:10.1146/annurev.mi.43.100189.001231.

    Article  CAS  PubMed  Google Scholar 

  60. Holmes DJ, Cundliffe E. Analysis of a ribosomal RNA methylase gene from Streptomyces tenebrarius which confers resistance to gentamicin. Mol Gen Genet. 1991;229(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  61. Holmes DJ, Drocourt D, Tiraby G, Cundliffe E. Cloning of an aminoglycoside-resistance-encoding gene, kamC, from Saccharopolyspora hirsuta: comparison with kamB from Streptomyces tenebrarius. Gene. 1991;102(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  62. Kelemen GH, Cundliffe E, Financsek I. Cloning and characterization of gentamicin-resistance genes from Micromonospora purpurea and Micromonospora rosea. Gene. 1991;98(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  63. Ohta T, Hasegawa M. Analysis of the nucleotide sequence of fmrT encoding the self-defense gene of the istamycin producer, Streptomyces tenjimariensis ATCC 31602; comparison with the squences of kamB of Streptomyces tenebrarius NCIB 11028 and kamC of Saccharopolyspora hirsuta CL102. J Antibiot (Tokyo). 1993;46(3):511–7.

    Article  CAS  Google Scholar 

  64. Skeggs PA, Thompson J, Cundliffe E. Methylation of 16S ribosomal RNA and resistance to aminoglycoside antibiotics in clones of Streptomyces lividans carrying DNA from Streptomyces tenjimariensis. Mol Gen Genet. 1985;200(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  65. Thompson J, Skeggs PA, Cundliffe E. Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet. 1985;201(2):168–73.

    Article  CAS  PubMed  Google Scholar 

  66. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999;43(4):727–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93. doi:10.1016/S0140-6736(03)14959-8.

    Article  CAS  PubMed  Google Scholar 

  68. Doi Y, Yokoyama K, Yamane K, Wachino J, Shibata N, Yagi T, Shibayama K, Kato H, Arakawa Y. Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother. 2004;48(2):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wachino J, Yamane K, Shibayama K, Kurokawa H, Shibata N, Suzuki S, Doi Y, Kimura K, Ike Y, Arakawa Y. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides. Antimicrob Agents Chemother. 2006;50(1):178–84. doi:10.1128/AAC.50.1.178-184.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yamane K, Wachino J, Doi Y, Kurokawa H, Arakawa Y. Global spread of multiple aminoglycoside resistance genes. Emerg Infect Dis. 2005;11(6):951–3. doi:10.3201/eid1106.040924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yan JJ, Wu JJ, Ko WC, Tsai SH, Chuang CL, Wu HM, Lu YJ, Li JD. Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother. 2004;54(6):1007–12. doi:10.1093/jac/dkh455.

    Article  CAS  PubMed  Google Scholar 

  72. Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, Shibata N, Ike Y, Arakawa Y. Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Antimicrob Agents Chemother. 2007;51(12):4401–9. doi:10.1128/AAC.00926-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poole K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect. 2004;10(1):12–26.

    Article  CAS  PubMed  Google Scholar 

  74. Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 2002;419(6907):587–93. doi:10.1038/nature01050.

    Article  CAS  PubMed  Google Scholar 

  75. Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol. 2000;37(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  76. Aires JR, Köhler T, Nikaido H, Plésiat P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 1999;43(11):2624–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hocquet D, Vogne C, El Garch F, Vejux A, Gotoh N, Lee A, Lomovskaya O, Plésiat P. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother. 2003;47(4):1371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Islam S, Jalal S, Wretlind B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect. 2004;10(10):877–83. doi:10.1111/j.1469-0691.2004.00991.x.

    Article  CAS  PubMed  Google Scholar 

  79. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45(12):3375–80. doi:10.1128/AAC.45.12.3375-3380.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000;182(6):1754–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, Nguyen LY, Shawar RM, Folger KR, Stover CK. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother. 1999;43(12):2975–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56(1):20–51. doi:10.1093/jac/dki171.

    Article  CAS  PubMed  Google Scholar 

  83. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol. 2012;3:408. doi:10.3389/fmicb.2012.00408.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jo JT, Brinkman FS, Hancock RE. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother. 2003;47(3):1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Buroni S, Pasca MR, Flannagan RS, Bazzini S, Milano A, Bertani I, Venturi V, Valvano MA, Riccardi G. Assessment of three resistance-nodulation-cell division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance. BMC Microbiol. 2009;9:200. doi:10.1186/1471-2180-9-200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jassem AN, Forbes CM, Speert DP. Investigation of aminoglycoside resistance inducing conditions and a putative AmrAB-OprM efflux system in Burkholderia vietnamiensis. Ann Clin Microbiol Antimicrob. 2014;13:2. doi:10.1186/1476-0711-13-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Moore RA, DeShazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother. 1999;43(3):465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Aires JR, Nikaido H. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J Bacteriol. 2005;187(6):1923–9. doi:10.1128/JB.187.6.1923-1929.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947–53. doi:10.1128/AAC.01388-10.

    Article  CAS  PubMed  Google Scholar 

  90. Chau SL, Chu YW, Houang ET. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother. 2004;48(10):4054–5. doi:10.1128/AAC.48.10.4054-4055.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Rossi E, Arrigo P, Bellinzoni M, Silva PA, Martín C, Aínsa JA, Guglierame P, Riccardi G. The multidrug transporters belonging to major facilitator superfamily in Mycobacterium tuberculosis. Mol Med. 2002;8(11):714–24.

    PubMed  PubMed Central  Google Scholar 

  92. Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martín C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol. 1998;180(22):5836–43.

    PubMed  PubMed Central  Google Scholar 

  93. Silva PE, Bigi F, Santangelo MP, Romano MI, Martín C, Cataldi A, Aínsa JA. Characterization of P55, a multidrug efflux pump in Mycobacterium bovis and Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2001;45(3):800–4. doi:10.1128/AAC.45.3.800-804.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Llano-Sotelo B, Azucena EF, Kotra LP, Mobashery S, Chow CS. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol. 2002;9(4):455–63.

    Article  CAS  PubMed  Google Scholar 

  95. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57(1):138–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Novick RP, Clowes RC, Cohen SN, Curtiss R, Datta N, Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976;40(1):168–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat. 2001;4(2):106–17. doi:10.1054/drup.2001.0197.

    Article  CAS  PubMed  Google Scholar 

  98. Wright GD. Aminoglycoside-modifying enzymes. Curr Opin Microbiol. 1999;2(5):499–503.

    Article  CAS  PubMed  Google Scholar 

  99. Okamoto S, Suzuki Y. Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome ‘R’. Nature. 1965;208(5017):1301–3.

    Article  CAS  PubMed  Google Scholar 

  100. Radika K, Northrop D. A new kinetic diagnostic for enzymatic mechanisms using alternative substrates. Anal Biochem. 1984;141(2):413–7.

    Article  CAS  PubMed  Google Scholar 

  101. Radika K, Northrop DB. The kinetic mechanism of kanamycin acetyltransferase derived from the use of alternative antibiotics and coenzymes. J Biol Chem. 1984;259(20):12543–6.

    CAS  PubMed  Google Scholar 

  102. Magnet S, Courvalin P, Lambert T. Activation of the cryptic aac(6′)-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J Bacteriol. 1999;181(21):6650–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vetting MW, S de Carvalho LP, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 2005;433(1):212–26. doi:10.1016/j.abb.2004.09.003.

    Article  CAS  PubMed  Google Scholar 

  104. Magnet S, Lambert T, Courvalin P, Blanchard JS. Kinetic and mutagenic characterization of the chromosomally encoded Salmonella enterica AAC(6′)-Iy aminoglycoside N-acetyltransferase. Biochemistry. 2001;40(12):3700–9.

    Article  CAS  PubMed  Google Scholar 

  105. Vetting MW, Magnet S, Nieves E, Roderick SL, Blanchard JS. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem Biol. 2004;11(4):565–73. doi:10.1016/j.chembiol.2004.03.017.

    Article  CAS  PubMed  Google Scholar 

  106. Magnet S, Smith TA, Zheng R, Nordmann P, Blanchard JS. Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase. Antimicrob Agents Chemother. 2003;47(5):1577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Culebras E, Martínez JL. Aminoglycoside resistance mediated by the bifunctional enzyme 6′-N-aminoglycoside acetyltransferase-2″-O-aminoglycoside phosphotransferase. Front Biosci. 1999;4:D1–8.

    Article  CAS  PubMed  Google Scholar 

  108. Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P. Characterization of the chromosomal aac(6′)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother. 1993;37(9):1896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Draker KA, Northrop DB, Wright GD. Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6′)-Ii from Enterococcus faecium: evidence of dimer subunit cooperativity. Biochemistry. 2003;42(21):6565–74. doi:10.1021/bi034148h.

    Article  CAS  PubMed  Google Scholar 

  110. Draker KA, Wright GD. Molecular mechanism of the enterococcal aminoglycoside 6′-N-acetyltransferase’: role of GNAT-conserved residues in the chemistry of antibiotic inactivation. Biochemistry. 2004;43(2):446–54. doi:10.1021/bi035667n.

    Article  CAS  PubMed  Google Scholar 

  111. Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure. 1999;7(5):497–507.

    Article  CAS  PubMed  Google Scholar 

  112. Aínsa JA, Pérez E, Pelicic V, Berthet FX, Gicquel B, Martín C. Aminoglycoside 2′-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol Microbiol. 1997;24(2):431–41.

    Article  PubMed  Google Scholar 

  113. Macinga DR, Rather PN. The chromosomal 2′-N-acetyltransferase of Providencia stuartii: physiological functions and genetic regulation. Front Biosci. 1999;4:D132–40.

    Article  CAS  PubMed  Google Scholar 

  114. Rather PN, Orosz E, Shaw KJ, Hare R, Miller G. Characterization and transcriptional regulation of the 2′-N-acetyltransferase gene from Providencia stuartii. J Bacteriol. 1993;175(20):6492–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hegde SS, Javid-Majd F, Blanchard JS. Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC(2′)-Ic) from Mycobacterium tuberculosis. J Biol Chem. 2001;276(49):45876–81. doi:10.1074/jbc.M108810200.

    Article  CAS  PubMed  Google Scholar 

  116. Le Goffic F, Martel A, Witchitz J. 3-N enzymatic acetylation of gentamicin, tobramycin, and kanamycin by Escherichia coli carrying an R factor. Antimicrob Agents Chemother. 1974;6(6):680–4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Williams JW, Northrop DB. Purification and properties of gentamicin acetyltransferase I. Biochemistry. 1976;15(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  118. Williams JW, Northrop DB. Kinetic mechanisms of gentamicin acetyltransferase I. Antibiotic-dependent shift from rapid to nonrapid equilibrium random mechanisms. J Biol Chem. 1978;253(17):5902–7.

    CAS  PubMed  Google Scholar 

  119. Biddlecome S, Haas M, Davies J, Miller GH, Rane DF, Daniels PJ. Enzymatic modification of aminoglycoside antibiotics: a new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother. 1976;9(6):951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Davies J, O’Connor S. Enzymatic modification of aminoglycoside antibiotics: 3-N-acetyltransferase with broad specificity that determines resistance to the novel aminoglycoside apramycin. Antimicrob Agents Chemother. 1978;14(1):69–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chaslus-Dancla E, Martel JL, Carlier C, Lafont JP, Courvalin P. Emergence of aminoglycoside 3-N-acetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob Agents Chemother. 1986;29(2):239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chaslus-Dancla E, Pohl P, Meurisse M, Marin M, Lafont JP. High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob Agents Chemother. 1991;35(3):590–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Magalhaes ML, Blanchard JS. The kinetic mechanism of AAC3-IV aminoglycoside acetyltransferase from Escherichia coli. Biochemistry. 2005;44(49):16275–83. doi:10.1021/bi051777d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Coombe RG, George AM. Purification and properties of an aminoglycoside acetyltransferase from Pseudomonas aeruginosa. Biochemistry. 1982;21(5):871–5.

    Article  CAS  PubMed  Google Scholar 

  125. Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y, Burley SK. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell. 1998;94(4):439–49.

    Article  CAS  PubMed  Google Scholar 

  126. Wright GD, Thompson PR. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci. 1999;4:D9–21.

    CAS  PubMed  Google Scholar 

  127. Kim C, Mobashery S. Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorg Chem. 2005;33(3):149–58. doi:10.1016/j.bioorg.2004.11.001.

    Article  PubMed  CAS  Google Scholar 

  128. Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell. 1997;89(6):887–95.

    Article  CAS  PubMed  Google Scholar 

  129. Daigle DM, McKay GA, Wright GD. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem. 1997;272(40):24755–8.

    Article  CAS  PubMed  Google Scholar 

  130. Daigle DM, McKay GA, Thompson PR, Wright GD. Amino_glycoside antibiotic phosphotransferases are also serine protein kinases. Chem Biol. 1999;6(1):11–8. doi:10.1016/S1074-5521(99)80016-7.

  131. McKay GA, Wright GD. Kinetic mechanism of aminoglycoside phosphotransferase type IIIa. Evidence for a Theorell-Chance mechanism. J Biol Chem. 1995;270(42):24686–92.

    Article  CAS  PubMed  Google Scholar 

  132. Martel A, Masson M, Moreau N, Le Goffic F. Kinetic studies of aminoglycoside acetyltransferase and phosphotransferase from Staphylococcus aureus RPAL. Relationship between the two activities. Eur J Biochem. 1983;133(3):515–21.

    Article  CAS  PubMed  Google Scholar 

  133. Heinzel P, Werbitzky O, Distler J, Piepersberg W. A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3″-phosphotransferase. Relationships between antibiotic and protein kinases. Arch Microbiol. 1988;150(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  134. Hollingshead S, Vapnek D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid. 1985;13(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  135. Murphy E. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9). Mol Gen Genet. 1985;200(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  136. Ounissi H, Derlot E, Carlier C, Courvalin P. Gene homogeneity for aminoglycoside-modifying enzymes in gram-positive cocci. Antimicrob Agents Chemother. 1990;34(11):2164–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Benveniste R, Davies J. R-factor mediated gentamicin resistance: a new enzyme which modifies aminoglycoside antibiotics. FEBS Lett. 1971;14(5):293–6.

    Article  CAS  PubMed  Google Scholar 

  138. Gates CA, Northrop DB. Substrate specificities and structure-activity relationships for the nucleotidylation of antibiotics catalyzed by aminoglycoside nucleotidyltransferase 2″-I. Biochemistry. 1988;27(10):3820–5.

    Article  CAS  PubMed  Google Scholar 

  139. Van Pelt JE, Iyengar R, Frey PA. Gentamicin nucleotidyltransferase. Stereochemical inversion at phosphorus in enzymatic 2′-deoxyadenylyl transfer to tobramycin. J Biol Chem. 1986;261(34):15995–9.

    PubMed  Google Scholar 

  140. Wright E, Serpersu EH. Enzyme-substrate interactions with an antibiotic resistance enzyme: aminoglycoside nucleotidyltransferase(2″)-Ia characterized by kinetic and thermodynamic methods. Biochemistry. 2005;44(34):11581–91. doi:10.1021/bi050797c.

    Article  CAS  PubMed  Google Scholar 

  141. Le Goffic F, Baca B, Soussy CJ, Dublanchet A, Duval J. ANT(4′)I: a new aminoglycoside nucleotidyltransferase found in “staphylococcus aureus” (author’s transl). Ann Microbiol (Paris). 1976;127(3):391–9.

    Google Scholar 

  142. Courvalin P. Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 1994;38(7):1447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dzidic S, Bedeković V. Horizontal gene transfer-emerging multidrug resistance in hospital bacteria. Acta Pharmacol Sin. 2003;24(6):519–26.

    CAS  PubMed  Google Scholar 

  144. Feizabadi MM, Asadi S, Zohari M, Gharavi S, Etemadi G. Genetic characterization of high-level gentamicin-resistant strains of Enterococcus faecalis in Iran. Can J Microbiol. 2004;50(10):869–72. doi:10.1139/w04-069.

    Article  CAS  PubMed  Google Scholar 

  145. Waters VL. Conjugative transfer in the dissemination of beta-lactam and aminoglycoside resistance. Front Biosci. 1999;4:D433–56.

    Article  CAS  PubMed  Google Scholar 

  146. Allen JR, Hightower AW, Martin SM, Dixon RE. Secular trends in nosocomial infections: 1970–1979. Am J Med. 1981;70(2):389–92.

    Article  CAS  PubMed  Google Scholar 

  147. Archer GL, Johnston JL. Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrob Agents Chemother. 1983;24(1):70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Forbes BA, Schaberg DR. Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. J Bacteriol. 1983;153(2):627–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Udou T. Dissemination of nosocomial multiple-aminoglycoside-resistant Staphylococcus aureus caused by horizontal transfer of the resistance determinant (aacA/aphD) and clonal spread of resistant strains. Am J Infect Control. 2004;32(4):215–9. doi:10.1016/j.ajic.2003.11.002.

    Article  PubMed  Google Scholar 

  150. Galimand M, Sabtcheva S, Courvalin P, Lambert T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob Agents Chemother. 2005;49(7):2949–53. doi:10.1128/AAC.49.7.2949-2953.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. González-Zorn B, Catalan A, Escudero JA, Domínguez L, Teshager T, Porrero C, Moreno MA. Genetic basis for dissemination of armA. J Antimicrob Chemother. 2005;56(3):583–5. doi:10.1093/jac/dki246.

    Article  PubMed  CAS  Google Scholar 

  152. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Ayala J, Coque TM, Kern-Zdanowicz I, Luzzaro F, Poirel L, Woodford N. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–74. doi:10.1093/jac/dkl483.

    Article  CAS  PubMed  Google Scholar 

  153. Díaz P, Bello H, Domínguez M, Trabal N, Mella S, Zemelman R, González G. Resistance to gentamicin, amikacin and ciprofloxacin among nosocomial isolates of klebsiella pneumoniae subspecie pneumoniae producing extended spectrum beta-lactamases. Rev Med Chil. 2004;132(10):1173–8.

    Article  PubMed  Google Scholar 

  154. Ma L, Lin CJ, Chen JH, Fung CP, Chang FY, Lai YK, Lin JC, Siu LK, Taiwan Surveillance of Antimicrobial Resistance Project. Widespread dissemination of aminoglycoside resistance genes armA and rmtB in Klebsiella pneumoniae isolates in Taiwan producing CTX-M-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2009;53(1):104–11. doi:10.1128/AAC.00852-08.

    Article  CAS  PubMed  Google Scholar 

  155. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, Press EG, Iovine NM, Townsend BM, Wagener MM, Kreiswirth B, Nguyen MH. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443–51. doi:10.1128/AAC.00099-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Berçot B, Poirel L, Nordmann P. Updated multiplex polymerase chain reaction for detection of 16S rRNA methylases: high prevalence among NDM-1 producers. Diagn Microbiol Infect Dis. 2011;71(4):442–5. doi:10.1016/j.diagmicrobio.2011.08.016.

    Article  PubMed  CAS  Google Scholar 

  157. Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, Woodford N. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011;66(1):48–53. doi:10.1093/jac/dkq408.

    Article  CAS  PubMed  Google Scholar 

  158. Mushtaq S, Irfan S, Sarma JB, Doumith M, Pike R, Pitout J, Livermore DM, Woodford N. Phylogenetic diversity of Escherichia coli strains producing NDM-type carbapenemases. J Antimicrob Chemother. 2011;66(9):2002–5. doi:10.1093/jac/dkr226.

    Article  CAS  PubMed  Google Scholar 

  159. Poirel L, Savov E, Nazli A, Trifonova A, Todorova I, Gergova I, Nordmann P. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob Agents Chemother. 2014;58(4):2472–4. doi:10.1128/AAC.02571-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Berrazeg M, Diene S, Medjahed L, Parola P, Drissi M, Raoult D, Rolain J. New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill. 2014;19(20).

    Google Scholar 

  161. Bushnell G, Mitrani-Gold F, Mundy LM. Emergence of New Delhi metallo-β-lactamase type 1-producing enterobacteriaceae and non-enterobacteriaceae: global case detection and bacterial surveillance. Int J Infect Dis. 2013;17(5):e325–33. doi:10.1016/j.ijid.2012.11.025.

    Article  CAS  PubMed  Google Scholar 

  162. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8. doi:10.1038/nm1347.

    Article  CAS  PubMed  Google Scholar 

  163. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A. Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev. 2009;22(4):664–89. doi:10.1128/CMR.00016-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr Med Chem. 2009;16(8):1028–46.

    Article  CAS  PubMed  Google Scholar 

  165. Smith CA, Baker EN. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord. 2002;2(2):143–60.

    Article  CAS  PubMed  Google Scholar 

  166. Maraki S, Samonis G, Karageorgopoulos DE, Mavros MN, Kofteridis D, Falagas ME. In vitro antimicrobial susceptibility to isepamicin of 6,296 Enterobacteriaceae clinical isolates collected at a tertiary care university hospital in Greece. Antimicrob Agents Chemother. 2012;56(6):3067–73. doi:10.1128/AAC.06358-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yoshikawa Y, Morikawa K, Nonaka M, Torii I. Effect of arbekacin on a methicillin-resistant Staphylococcus aureus-induced biofilm in a rat model. J Infect Chemother. 2004;10(5):268–73. doi:10.1007/s10156-004-0336-0.

    Article  CAS  PubMed  Google Scholar 

  168. Fujimura S, Tokue Y, Takahashi H, Kobayashi T, Gomi K, Abe T, Nukiwa T, Watanabe A. Novel arbekacin- and amikacin-modifying enzyme of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett. 2000;190(2):299–303.

    Article  CAS  PubMed  Google Scholar 

  169. Armstrong ES, Miller GH. Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol. 2010;13(5):565–73. doi:10.1016/j.mib.2010.09.004.

    Article  CAS  PubMed  Google Scholar 

  170. Nagabhushan T, Miller G, Weinstein M. Structure–activity relationships in aminoglycoside-aminocyclitol antibiotics. In: Whelton A, Neu HC, editors. The aminoglycosides: microbiology, clinical use and toxicology. New York: Marcel Dekker; 1982. p. 3–27.

    Google Scholar 

  171. Galani I, Souli M, Daikos GL, Chrysouli Z, Poulakou G, Psichogiou M, Panagea T, Argyropoulou A, Stefanou I, Plakias G, Giamarellou H, Petrikkos G. Activity of plazomicin (ACHN-490) against MDR clinical isolates of Klebsiella pneumoniae, Escherichia coli, and Enterobacter spp. from Athens, Greece. J Chemother. 2012;24(4):191–4. doi:10.1179/1973947812Y.0000000015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn E. Connolly M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Serio, A.W., Magalhães, M.L., Blanchard, J.S., Connolly, L.E. (2017). Aminoglycosides: Mechanisms of Action and Resistance. In: Mayers, D., Sobel, J., Ouellette, M., Kaye, K., Marchaim, D. (eds) Antimicrobial Drug Resistance. Springer, Cham. https://doi.org/10.1007/978-3-319-46718-4_14

Download citation

Publish with us

Policies and ethics