Skip to main content

Road to Heart Regeneration with Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Liver, Lung and Heart Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

  • 831 Accesses

Abstract

Restoration of cardiac function is the most desirable treatment of severe heart failure. However, effective regenerative therapy for the lost cardiomyocytes is currently an unmet medical need. Induced pluripotent stem cells (iPSCs) are the ideal cell source for regenerative cardiomyocytes, because they can be reprogrammed from patient cells, enabling autologous transplantation. However, the clinical application of iPSC-derived cardiomyocytes is hampered by several roadblocks. The quality of iPSCs must be guaranteed for clinical applications. Although the protocols to differentiate iPSCs to cardiomyocytes have been improved, it remains a substantial challenge to acquire a large amount of iPSC-derived cardiomyocytes. Mass floating cell culture is an effective system to solve this problem; however, the remaining undifferentiated stem cells are the critical issue. The most important step for clinical application is the purification of cardiomyocytes to avoid tumor formation after transplantation, and the quality of regenerative cardiomyocytes must also be controlled. The phenotype of cardiomyocytes is normally infant-type immediately after differentiation, comprising nodal, atrial, and ventricular cardiomyocytes. In addition, the transplantation strategies to support cell engraftment are essential for cell therapies. Co-transplantation with biodegradable materials such as fibrin, collagen, and gelatin may be helpful to improve graft survival. Acute and chronic immunological rejection should be well controlled with appropriate immunosuppressive therapies. Safety issues of transplanted cardiomyocytes, such as arrhythmia, teratoma formation, and side effects of immunosuppressive therapies, are also very important. These fundamental issues must be solved to move toward clinical application, with the ultimate goal of cardiac regenerative therapies with iPSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Wagner RA, Wilson KD, Xie X, Fu JD, Drukker M, Lee A, Li RA, Gambhir SS, Weissman IL et al (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 3:e3474

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyranoski D (2014) Japanese woman is first recipient of next-generation stem cells. Nature

    Google Scholar 

  • Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, Gramolini A, Keller G (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, Biben C, Hatzistavrou T, Hirst CE, Yu QC et al (2011) NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8:1037–1040

    Article  CAS  PubMed  Google Scholar 

  • Fujita J, Fukuda K (2014) Future prospects for regenerated heart using induced pluripotent stem cells. J Pharmacol Sci 125:1–5

    Article  CAS  PubMed  Google Scholar 

  • Fujita J, Itabashi Y, Seki T, Tohyama S, Tamura Y, Sano M, Fukuda K (2012) Myocardial cell sheet therapy and cardiac function. Am J Physiol Heart Circ Physiol 303:H1169–H1182

    Article  CAS  PubMed  Google Scholar 

  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyette JP, Charest JM, Mills RW, Jank BJ, Moser PT, Gilpin SE, Gershlak JR, Okamoto T, Gonzalez G, Milan DJ et al (2016) Bioengineering human myocardium on native extracellular matrix. Circ Res 118:56–72

    Article  CAS  PubMed  Google Scholar 

  • Hattan N, Kawaguchi H, Ando K, Kuwabara E, Fujita J, Murata M, Suematsu M, Mori H, Fukuda K (2005) Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65:334–344

    Article  CAS  PubMed  Google Scholar 

  • Hattori F, Chen H, Yamashita H, Tohyama S, Satoh Y-S, Yuasa S, Li W, Yamakawa H, Tanaka T, Onitsuka T et al (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Meth 7:61–66

    Google Scholar 

  • Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M et al (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3:1473–1483

    Google Scholar 

  • Itabashi Y, Miyoshi S, Yuasa S, Fujita J, Shimizu T, Okano T, Fukuda K, Ogawa S (2005) Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Cardiovasc Res 67:561–570

    Article  CAS  PubMed  Google Scholar 

  • Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34:312–319

    Article  CAS  PubMed  Google Scholar 

  • Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240

    Article  CAS  PubMed  Google Scholar 

  • Kimura T, Miyoshi S, Okamoto K, Fukumoto K, Tanimoto K, Soejima K, Takatsuki S, Fukuda K (2012) The effectiveness of rigid pericardial endoscopy for minimally invasive minor surgeries: cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation. J Cardiothorac Surg 7:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109:E1848–E1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, Levvey BJ, Meiser B, Rossano JW, Yusen RD et al (2015) The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report--2015; focus theme: early graft failure. J Heart Lung Transplant 34:1244–1254

    Article  PubMed  Google Scholar 

  • Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, Kolaja KL, Swanson BJ, January CT (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301:H2006–H2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marui A, Tabata Y, Kojima S, Yamamoto M, Tambara K, Nishina T, Saji Y, Inui K, Hashida T, Yokoyama S et al (2007) A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I-IIa study. Circ J 71:1181–1186

    Article  CAS  PubMed  Google Scholar 

  • Masumoto H, Matsuo T, Yamamizu K, Uosaki H, Narazaki G, Katayama S, Marui A, Shimizu T, Ikeda T, Okano T et al (2012) Pluripotent stem cell-engineered cell sheets re-assembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 30:1196–1205

    Google Scholar 

  • Matsuura K, Wada M, Shimizu T, Haraguchi Y, Sato F, Sugiyama K, Konishi K, Shiba Y, Ichikawa H, Tachibana A et al (2012) Creation of human cardiac cell sheets using pluripotent stem cells. Biochem Biophys Res Commun 425:321–327

    Article  CAS  PubMed  Google Scholar 

  • Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin J-T, Marolleau J-P, Seymour B, Larghero J et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  • Morizane A, Doi D, Kikuchi T, Okita K, Hotta A, Kawasaki T, Hayashi T, Onoe H, Shiina T, Yamanaka S et al (2013) Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a non-human primate. Stem Cell Reports 1:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima K, Fujita J, Matsui M, Tohyama S, Tamura N, Kanazawa H, Seki T, Kishino Y, Hirano A, Okada M et al (2015) Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS One 10:e0133308

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2:014110

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26:739–740

    Article  CAS  PubMed  Google Scholar 

  • Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013) An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31:458–466

    Article  CAS  PubMed  Google Scholar 

  • Olmer R, Lange A, Selzer S, Kasper C, Haverich A, Martin U, Zweigerdt R (2012) Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C Methods 18:772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  • Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction a 5-year update. J Am Coll Cardiol 58:2615–2629

    Article  CAS  PubMed  Google Scholar 

  • Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D, Nakata H, Tohyama S, Hashimoto H, Kodaira M et al (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11–14

    Article  CAS  PubMed  Google Scholar 

  • Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325

    Google Scholar 

  • Strauer B-E, Steinhoff G (2011) 10 Years of intracoronary and intramyocardial bone marrow stem cell therapy of the heart: from the methodological origin to clinical practice. J Am Coll Cardiol 58:1095–1104

    Article  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takei S, Ichikawa H, Johkura K, Mogi A, No H, Yoshie S, Tomotsune D, Sasaki K (2009) Bone morphogenetic protein-4 promotes induction of cardiomyocytes from human embryonic stem cells in serum-based embryoid body development. Am J Physiol Heart Circ Physiol 296:H1793–H1803

    Article  CAS  PubMed  Google Scholar 

  • Thompson SA, Burridge PW, Lipke EA, Shamblott M, Zambidis ET, Tung L (2012) Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model. J Mol Cell Cardiol 53:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, Hashimoto H, Suzuki T, Yamashita H, Satoh Y et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137

    Article  CAS  PubMed  Google Scholar 

  • Tohyama S, Fujita J, Hishiki T, Matsuura T, Hattori F, Ohno R, Kanazawa H, Seki T, Nakajima K, Kishino Y et al (2016) Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 23(4):663–674

    Google Scholar 

  • Tran TH, Wang X, Browne C, Zhang Y, Schinke M, Izumo S, Burcin M (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, Yamashita JK (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner JC, Sicard RE (1987) Lactate metabolism of isolated, perfused fetal, and newborn pig hearts. Pediatr Res 22:552–556

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M, Cashman J, Mercola M (2011) Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res 109:360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Highway Program for Realization of Regenerative Medicine from Japan Science and Technology Agency (to K.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fujita, J., Tohyama, S., Nakajima, K., Seki, T., Kanazawa, H., Fukuda, K. (2017). Road to Heart Regeneration with Induced Pluripotent Stem Cells. In: Pham, P. (eds) Liver, Lung and Heart Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-46693-4_8

Download citation

Publish with us

Policies and ethics