Skip to main content

Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders

  • Chapter
  • First Online:
Liver, Lung and Heart Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Despite substantial clinical advances over the past decades, inflammatory lung diseases are a major cause of morbidity and mortality and have become one of the major public health issues across the world. The World Health Organization positions lung diseases second in epidemiology, mortality, and cost and predicts that about one-fifth deaths will be attributed to lung diseases by 2020. Currently, there are no therapeutic ways to inhibit or reverse the pathobiology of many destructive lung diseases that results in dysfunctional lung renovation. However, recent studies indicate that lung mesenchymal stem cells (MSCs) are triggered by local factors to differentiate into myofibroblasts that contribute to disease progression. Therefore, it is of critical significance to understand the molecular and cellular basis of endogenous lung MSCs participation in lung injury and repair. Interestingly, while the lung exhibits tremendous regenerative capacity, restoration of pulmonary function does not occur in many adult lung diseases. To address this condition emphasis has been increased on the development of cell-based therapies, but due to diverse cell types and functions lung is considered as a recalcitrant candidate for these strategies. Currently, origins and contributions of stem cells are under intense investigation for cell-based therapy and pulmonary remodelling. Specialized microenvironments for resident multipotent MSCs have been identified in many adult tissues and normal differentiation processes of these may be disrupted by pathologic micro-environmental stimuli during disease, epigenetic changes, or genetic alteration, which program their contribution to pathologic expansion at the expense of functional tissue regeneration. MSCs are most widely investigated and clinically tested type of stem cell because of their regenerative capacity to mesoderm/non-mesoderm-derived tissues and they also display immune-enhancing as well as immunosuppressive properties. MSCs especially from human are widely studied as compared to other cells, different early stage clinical and scientific studies show potential for repair and renewal of lung tissues and offer great ability for the treatment of several devastating and incurable lung diseases. Bone marrow derived MSCs (BM-MSCs) are currently tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases. Here, we will review the biology of MSCs, their interaction with molecular and cellular pathways, and their modulation of immune responses in lung disorders. Additionally, we discuss what stem cell therapy offers in specific acute and chronic lung disorders which includes respiratory distress syndrome (RDS), chronic obstructive pulmonary disease (COPD), asthma, fibrosis, bronchopulmonary dysplasia (BPD), and pulmonary hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdollahi A et al (2005) Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med 201:925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abman SH, Matthay MA (2009) Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia: delivering the secretome. Am J Respir Crit Care Med 180:1039–1041

    Article  PubMed  Google Scholar 

  • Abreu SC et al (2013) Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma. Respir Physiol Neurobiol 187:190–198

    Google Scholar 

  • Admyre C et al (2008) Exosomes - nanovesicles with possible roles in allergic inflammation. Allergy 63:404–408

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Ahn SY, Chang YS, Park WS (2015) Stem cell therapy for bronchopulmonary dysplasia: bench to bedside translation. J Korean Med Sci 30:509–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Akram KM, Samad S, Spiteri MA, Forsyth NR (2013) Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms. Respir Res 14:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  PubMed  Google Scholar 

  • Antoniou KM et al (2010) Investigation of bone marrow mesenchymal stem cells (BM MSCs) involvement in idiopathic pulmonary fibrosis (IPF). Respir Med 104:1535–1542

    Article  PubMed  Google Scholar 

  • Antunes MA, Laffey JG, Pelosi P, Rocco PRM (2014) Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem 115:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Kajstura J, Leri A, Loscalzo J (2011) Tissue-specific adult stem cells in the human lung. Nat Med 17:1038–1039

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Perrella MA, Kourembanas S, Choi AMK, Loscalzo J (2012) Regenerative pulmonary medicine: potential and promise, pitfalls and challenges. Eur J Clin Invest 42:900–913

    Article  PubMed  PubMed Central  Google Scholar 

  • Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed  PubMed Central  Google Scholar 

  • Aslam M et al (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180:1122–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augello A et al (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol 35:1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Baber SR et al (2007) Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol 292:H1120–H1128

    Article  CAS  PubMed  Google Scholar 

  • Badylak SF, Weiss DJ, Caplan A, Macchiarini P (2012) Engineered whole organs and complex tissues. Lancet (London, England) 379:43–52

    Google Scholar 

  • Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124

    Article  CAS  PubMed  Google Scholar 

  • Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115:2691–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2:566–575

    Article  CAS  PubMed  Google Scholar 

  • Berg T et al (2010) β-catenin regulates mesenchymal progenitor cell differentiation during hepatogenesis. J Surg Res 164:276–285

    Google Scholar 

  • Bernardo ME, Locatelli F, Fibbe WE (2009) Mesenchymal stromal cells. Ann N Y Acad Sci 1176:101–117

    Article  CAS  PubMed  Google Scholar 

  • Beyth S et al (2010) and induce T-cell unresponsiveness human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105:2214–2219

    Article  CAS  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieback K, Klüter H (2007) Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther 2:310–323

    Article  CAS  PubMed  Google Scholar 

  • Bitencourt CS et al (2011) Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braza F et al (2016) Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells. doi:10.1002/stem.2344

    PubMed  Google Scholar 

  • Brewster CE et al (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3:507–511

    Article  CAS  PubMed  Google Scholar 

  • Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109:159–165

    Article  PubMed  Google Scholar 

  • Calió ML et al (2014) Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med 70:141–154

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  CAS  PubMed  Google Scholar 

  • Cargnoni A et al (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 18:405–422

    Article  PubMed  Google Scholar 

  • Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25:2739–2749

    Article  CAS  PubMed  Google Scholar 

  • Chang YS et al (2011) Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells dose-dependently attenuates hyperoxia-induced lung injury in neonatal rats. Cell Transplant 20:1843–1854

    Article  PubMed  Google Scholar 

  • Cho SW et al (2008) Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochem Biophys Res Commun 367:399–405

    Article  CAS  PubMed  Google Scholar 

  • Churg A et al (2003) Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am J Respir Crit Care Med 167:1083–1089

    Article  PubMed  Google Scholar 

  • Corcione A et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107:367–372

    Article  CAS  PubMed  Google Scholar 

  • Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  • Cruz FF et al (2015) Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 4:1302–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubillo I, Mirones I, Mari L (2014) Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy 69:730–740

    Google Scholar 

  • Dazzi F, Marelli-Berg FM (2008) Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. Eur J Immunol 38:1479–1482

    Article  CAS  PubMed  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  PubMed  Google Scholar 

  • De Boer J, Wang HJ, Van Blitterswijk C (2014) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    Google Scholar 

  • ARDS Definition Task Force et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533

    Google Scholar 

  • Di Ianni M et al (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36:309–318

    Article  PubMed  CAS  Google Scholar 

  • Di Nicola M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  • Dimmeler S, Losordo D, Williams AR, Hare JM (2011) Implications for Cardiac Disease. 016960:910–922

    Google Scholar 

  • Doeing DC, Solway J (2013) Airway smooth muscle in the pathophysiology and treatment of asthma. J Appl Physiol 114:834–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolgachev VA, Ullenbruch MR, Lukacs NW, Phan SH (2009) Role of stem cell factor and bone marrow-derived fibroblasts in airway remodeling. Am J Pathol 174:390–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22:849–860

    Article  CAS  PubMed  Google Scholar 

  • Favre J, Terborg N, Horrevoets AJG (2013) The diverse identity of angiogenic monocytes. Eur J Clin Invest 43:100–107

    Article  PubMed  Google Scholar 

  • Foronjy RF, Majka SM (2012) The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells 1:874–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredenburgh LE, Perrella MA, Mitsialis SA (2007) The role of heme oxygenase-1 in pulmonary disease. Am J Respir Cell Mol Biol 36:158–165

    Article  CAS  PubMed  Google Scholar 

  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  CAS  PubMed  Google Scholar 

  • García-Castro J et al (2008) Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. J Cell Mol Med 12:2552–2565

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazdhar A et al (2013) HGF expressing stem cells in usual interstitial pneumonia originate from the bone marrow and are antifibrotic. PLoS One 8:e65453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghofrani HA, Seeger W, Grimminger F (2005) Imatinib for the treatment of pulmonary arterial hypertension. N Engl J Med 353:1412–1413

    Article  CAS  PubMed  Google Scholar 

  • Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:214–221

    Article  CAS  PubMed  Google Scholar 

  • Giaid A et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  CAS  PubMed  Google Scholar 

  • Gizycki MJ, Adelroth E, Rogers AV, O’Byrne PM, Jeffery PK (1997) Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol 16:664–673

    Article  CAS  PubMed  Google Scholar 

  • Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105:2821–2827

    Article  CAS  PubMed  Google Scholar 

  • Goodwin M et al (2011) Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice. Stem Cells 29:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronthos S et al (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116:1827–1835

    Article  CAS  PubMed  Google Scholar 

  • Guan X-J et al (2013) Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem 114:323–335

    Article  CAS  PubMed  Google Scholar 

  • Guo F et al (2008) CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J Immunol 181(4):2285–2291

    Google Scholar 

  • Gupta N et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    Article  CAS  PubMed  Google Scholar 

  • Gupta N et al (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanania NA (2008) Targeting airway inflammation in asthma: current and future therapies. Chest 133:989–998

    Article  CAS  PubMed  Google Scholar 

  • Hansmann G et al (2012) Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2:170–181

    Google Scholar 

  • Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  • Huh JW et al (2011) Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol 301:L255–L266

    Article  CAS  PubMed  Google Scholar 

  • Humbert M et al (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 43:13S–24S

    Article  CAS  PubMed  Google Scholar 

  • Hung C et al (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188:820–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igura K et al (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553

    Article  CAS  PubMed  Google Scholar 

  • Islam MN et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  • Jin Z et al (2015) Biological effects and mechanisms of action of mesenchymal stem cell therapy in chronic obstructive pulmonary disease. J Int Med Res 43:303–310

    Article  PubMed  Google Scholar 

  • Jones EA et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360

    Article  PubMed  Google Scholar 

  • Jones EA et al (2004) Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 50:817–827

    Article  PubMed  Google Scholar 

  • Joo S-Y et al (2010) Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy 12:361–370

    Article  CAS  PubMed  Google Scholar 

  • Jun D et al (2011) The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells 29:725–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jurasz P, Courtman D, Babaie S, Stewart DJ (2010) Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol Ther 126:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kajstura J et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa H, Yoshikawa J (2005) Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD. Chest 128:3191–3197

    Article  CAS  PubMed  Google Scholar 

  • Kanki-Horimoto S et al (2006) Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 114:I181–I185

    PubMed  Google Scholar 

  • Keating A (2008) How do mesenchymal stromal cells suppress T cells? Cell Stem Cell 2:106–108

    Article  CAS  PubMed  Google Scholar 

  • Kim N, Cho S-G (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28:387–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-Y et al (2012) Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 302:L891–L908

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird T et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  PubMed  Google Scholar 

  • Kirton JP, Crofts NJ, George SJ, Brennan K, Canfield AE (2007) Wnt/beta-catenin signaling stimulates chondrogenic and inhibits adipogenic differentiation of pericytes: potential relevance to vascular disease? Circ Res 101:581–589

    Article  CAS  PubMed  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Google Scholar 

  • Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85:3–10

    Article  PubMed  Google Scholar 

  • Königshoff M et al (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119:772–787

    PubMed  PubMed Central  Google Scholar 

  • Kotton DN et al (2001) Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development 128:5181–5188

    CAS  PubMed  Google Scholar 

  • Krampera M et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398

    Article  CAS  PubMed  Google Scholar 

  • Kulterer B et al (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunter U et al (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17:2202–2212

    Article  CAS  PubMed  Google Scholar 

  • Lama VN et al (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lathrop MJ et al (2014) Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway. Stem Cells Transl Med 3:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet (Lond) 371:1579–1586

    Google Scholar 

  • Lee C et al (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L et al (2009) Paracrine action mediate the antifibrotic effect of transplanted mesenchymal stem cells in a rat model of global heart failure. Mol Biol Rep 36:725–731

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li D, Liu X, Tang S, Wei F (2012) Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats. J Inflamm (Lond) 9:33

    Article  CAS  Google Scholar 

  • Liang J et al (2010) Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis 69:1423–1429

    Article  PubMed  Google Scholar 

  • Liang OD et al (2011) Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells 29:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J et al (2016) Priming with ceramide 1 phosphate promotes the therapeutic effect of mesenchymal stem / stromal cells on pulmonary artery hypertension. PubMed Commons 473:3–4

    Google Scholar 

  • Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433:1–7

    Article  CAS  PubMed  Google Scholar 

  • Liu A-R et al (2013) Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 228:1270–1283

    Article  CAS  PubMed  Google Scholar 

  • Luan Y et al (2012) Implantation of mesenchymal stem cells improves right ventricular impairments caused by experimental pulmonary hypertension. Am J Med Sci 343:402–406

    Article  PubMed  Google Scholar 

  • Macchiarini P et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet (London, England) 372:2023–2030

    Google Scholar 

  • Madec AM et al (2009) Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia 52:1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Marigo I, Dazzi F (2011) The immunomodulatory properties of mesenchymal stem cells. Semin Immunopathol 33:593–602

    Article  PubMed  Google Scholar 

  • Mariñas-Pardo L et al (2014) Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy Eur J Allergy Clin Immunol 69:730–740

    Google Scholar 

  • Martin J, Helm K, Ruegg P, Burnham E, Majka S (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10:140–151

    Article  CAS  PubMed  Google Scholar 

  • Martínez-González I et al (2013) Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury. Am J Respir Cell Mol Biol 49:552–562

    Article  PubMed  CAS  Google Scholar 

  • McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107:1414–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei SHJ et al (2010) Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 182:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Meisel R et al (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103:4619–4621

    Article  CAS  PubMed  Google Scholar 

  • Minguell JJ, Erices A (2006) Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood) 231:39–49

    CAS  Google Scholar 

  • Moeller A et al (2009) Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:588–594

    Article  PubMed  Google Scholar 

  • Moodley Y et al (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moodley Y et al (2010) Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 182:643–651

    Article  CAS  PubMed  Google Scholar 

  • Moorman JE et al (2007) National surveillance for asthma--United States, 1980–2004. MMWR Surveill Summ 56:1–54

    PubMed  Google Scholar 

  • Murphy DM, O’Byrne PM (2010) Recent advances in the pathophysiology of asthma. Chest 137:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE (2006) Mesenchymal stem cells inhibit generation and function of both CD34 + -derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Németh K et al (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  PubMed  CAS  Google Scholar 

  • Nichols JE, Niles JA, Cortiella J (2012) Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem 113:2185–2192

    Article  CAS  PubMed  Google Scholar 

  • Nihlberg K et al (2006) Tissue fibrocytes in patients with mild asthma: a possible link to thickness of reticular basement membrane? Respir Res 7:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noble PW et al (2011) Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet (London, England) 377:1760–1769

    Google Scholar 

  • Ogulur I et al (2014) Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. Int Immunopharmacol 20:101–109

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N (2007) Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 581:3961–3966

    Article  CAS  PubMed  Google Scholar 

  • Ortiz LA et al (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 100:8407–8411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz LA et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12:87–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-A et al (2012) Tissue factor-bearing exosome secretion from human mechanically stimulated bronchial epithelial cells in vitro and in vivo. J Allergy Clin Immunol 130:1375–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons PE et al (2005) Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 33:1–6; discussion 230–232

    Google Scholar 

  • Patel SA et al (2010) Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol 184:5885–5894

    Article  CAS  PubMed  Google Scholar 

  • Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329:538–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phinney DG, Isakova I (2005) Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  • Pochampally RR, Smith JR, Ylostalo J, Prockop DJ (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ, Oh JY (2009) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20:14–20

    Article  CAS  Google Scholar 

  • Qayyum AA et al (2012) Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med 7:421–428

    Article  CAS  PubMed  Google Scholar 

  • Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174:810–816

    Article  PubMed  Google Scholar 

  • Raghu G et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  Google Scholar 

  • Ramos-Barbón D et al (2010) T Cells localize with proliferating smooth muscle alpha-actin + cell compartments in asthma. Am J Respir Crit Care Med 182:317–324

    Article  PubMed  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Machalinski B, Kucia M (2007) Bone-marrow-derived stem cells--our key to longevity? J Appl Genet 48:307–319

    Article  PubMed  Google Scholar 

  • Rehman J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298

    Article  PubMed  Google Scholar 

  • Ren G et al (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro-Paes JT et al (2011) Unicentric study of cell therapy in chronic obstructive pulmonary disease/pulmonary emphysema. Int J Chron Obstruct Pulmon Dis 6:63–71

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson DS (2010) The role of the T cell in asthma. J Allergy Clin Immunol 126:1081–91; quiz 1092–1093

    Google Scholar 

  • Rochefort GY et al (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208

    Article  CAS  PubMed  Google Scholar 

  • Rogers I, Casper RF (2004) Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol 18:893–908

    Article  PubMed  Google Scholar 

  • Rojas M et al (2005) Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33:145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio L, Vera-Sempere FJ, Lopez-Guerrero JA, Padilla J, Moreno-Baylach MJ (2005) A risk model for non-small cell lung cancer using clinicopathological variables, angiogenesis and oncoprotein expression. Anticancer Res 25(1B):497–504

    Google Scholar 

  • Sakao S, Tatsumi K, Voelkel NF (2009) Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 10:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saunders R et al (2009) Fibrocyte localization to the airway smooth muscle is a feature of asthma. J Allergy Clin Immunol 123:376–384

    Article  CAS  PubMed  Google Scholar 

  • Schermuly RT et al (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. In: StemBook. The Stem Cell Research Community. doi:10.3824/stembook.1.38.1, http://www.stembook.org

  • Schmidt M, Sun G, Stacey MA, Mori L, Mattoli S (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    Article  CAS  PubMed  Google Scholar 

  • Semënov MV et al (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961

    Google Scholar 

  • Shigemura N et al (2006) Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant 6:2592–2600

    Article  CAS  PubMed  Google Scholar 

  • Simonneau G et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41

    Article  PubMed  Google Scholar 

  • Smith VC et al (2005) Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr 146:469–473

    Article  PubMed  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A 103:1283–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spees JL et al (2008) Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J 22:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107:2570–2577

    Article  CAS  PubMed  Google Scholar 

  • Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129

    Article  CAS  PubMed  Google Scholar 

  • Summer R, Fitzsimmons K, Dwyer D, Murphy J, Fine A (2007) Isolation of an adult mouse lung mesenchymal progenitor cell population. Am J Respir Cell Mol Biol 37:152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemiya K et al (2010) Mesenchymal stem cell-based prostacyclin synthase gene therapy for pulmonary hypertension rats. Basic Res Cardiol 105:409–417

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi H et al (2010) Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 35:821–829

    Article  CAS  PubMed  Google Scholar 

  • Thibeault DW, Mabry SM, Ekekezie II, Zhang X, Truog WE (2003) Collagen scaffolding during development and its deformation with chronic lung disease. Pediatrics 111:766–776

    Article  PubMed  Google Scholar 

  • Tropea KA et al (2012) The promise of stem cells in bronchopulmonary dysplasia. Pediatrics 2:6

    Google Scholar 

  • Trounson A, Thakar RG, Lomax G, Gibbons D (2011) Clinical trials for stem cell therapies. BMC Med 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai M-S, Lee J-L, Chang Y-J, Hwang S-M (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  • Tsutsumi S et al (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288:413–419

    Article  CAS  PubMed  Google Scholar 

  • Tuder RM et al (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159:1925–1932

    Article  CAS  PubMed  Google Scholar 

  • Umar S et al (2009) Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 297:H1606–H1616

    Article  CAS  PubMed  Google Scholar 

  • Uren A et al (2000) Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 275:4374–4382

    Article  CAS  PubMed  Google Scholar 

  • van Haaften T et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM (2011) Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. J Cell Sci 124:1288–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vosdoganes P, Lim R, Moss TJM, Wallace EM (2012) Cell therapy: a novel treatment approach for bronchopulmonary dysplasia. Pediatrics 130:727–737

    Article  PubMed  Google Scholar 

  • Walker N et al (2011) Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol 178:2461–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MC et al (2006) Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117:S52–S56

    PubMed  Google Scholar 

  • Wang S, Wilkes MC, Leof EB, Hirschberg R (2005) Imatinib mesylate blocks a non-Smad TGF-beta pathway and reduces renal fibrogenesis in vivo. FASEB J 19:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Crisostomo PR, Herring C, Meldrum KK, Meldrum DR (2006) Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 291:R880–R884

    Article  CAS  PubMed  Google Scholar 

  • Ware LB et al (2007) Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 35:1821–1828

    PubMed  PubMed Central  Google Scholar 

  • Waterman RS, Henkle SL, Betancourt AM (2012) Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 7:e45590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP (2013) A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 143:1590–1598

    Article  CAS  PubMed  Google Scholar 

  • Weiss DJ et al (2014) An official American thoracic society workshop report : stem cells and cell therapies in lung biology and diseases. doi:10.1513/AnnalsATS.201502-086ST

  • Williams AR, Hare JM (2011) Mesenchymal stem cells: Biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AP et al (2007) Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol 293:L740–L752

    Article  CAS  PubMed  Google Scholar 

  • Wu P-S, Egger B, Brand AH (2008) Asymmetric stem cell division: lessons from Drosophila. Semin Cell Dev Biol 19:283–293

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Malladi P, Wagner DR, Longaker MT (2005) Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr Opin Mol Ther 7:300–305

    PubMed  Google Scholar 

  • Yang J, Jia Z (2014) Cell-based therapy in lung regenerative medicine. Regen Med Res 2:1–7

    Google Scholar 

  • Yang J et al (2013) Activated alveolar epithelial cells initiate fibrosis through secretion of mesenchymal proteins. Am J Pathol 183:1559–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng SLIN, Wang LIHUI, Li P, Wang WEI, Yang J (2015) Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. 2511–2520. doi:10.3892/mmr.2015.3706

  • Zhao YD et al (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96:442–450

    Article  CAS  PubMed  Google Scholar 

  • Zhao X et al (2014) The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells 32:521–533

    Article  CAS  PubMed  Google Scholar 

  • Zhen G et al (2008) Mesenchymal stem cells transplantation protects against rat pulmonary emphysema. Front Biosci 13:3415–3422

    Article  CAS  PubMed  Google Scholar 

  • Zhen G et al (2010) Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy 12:605–614

    Article  CAS  PubMed  Google Scholar 

  • Zheng G et al (2014) Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells : a randomized, placebo-controlled pilot study. Respir Res 15:39

    Google Scholar 

  • Zhu Y-G et al (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Fang Z, Hu X, Zhou S (2015) MicroRNAs and mesenchymal stem cells : hope for pulmonary hypertension. 30:380–385

    Google Scholar 

  • Zvaifler NJ et al (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Ali Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, K., Husain, S.Y., Das, P., Hussain, M., Syed, M.A. (2017). Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. In: Pham, P. (eds) Liver, Lung and Heart Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-46693-4_6

Download citation

Publish with us

Policies and ethics