Skip to main content

Stem Cell Therapy for Ischemic Heart Disease

  • Chapter
  • First Online:
Liver, Lung and Heart Regeneration

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

According to World Health Organization, cardiovascular disease, especially ischemic heart disease, is one of the top ten killers today. Therefore, a growing number of new therapies are being studied for curing this disease from new drug developments to new advance stent creations. Although these methods have given patients more comfortable than previous treatments, they cannot recover or stop the heart failure process. For that reason, regenerative medicine for cardiovascular disease is received much attention from scientist community and stem cell therapy becomes a critical issue of this strategy. This book chapter presents some aspects around stem cell therapy for the ischemic heart disease from general information about the disease, the differentiate ability of stem cells into functional heart cells, stem cell sources, delivery methods, and mechanism of the therapy to the cell dose using in transplantation, safety, and efficiency of the treatment. It is known that embryonic stem cells have a high differentiate potential into cardiomyocytes. However, tumor fertility and ethical issues have been barriers to the cell application in human. Thus, the cell source which is studied and widely used in the treatment trials for cardiovascular disease now is the adult stem cell. There is a variety of different adult stem cell sources such as human bone marrow derived stem cells, human myoblasts, and peripheral blood-derived stem and progenitor cells that are commonly used in clinical trials and showed a high efficient. Also, some other cell sources like adipose derived stem cells and human umbilical cord blood stem cells are also proved to give positive effects on animal models in preclinical studies, so they are potential cell sources for clinical applications. Besides cell materials, delivery routes and cell doses for transplantation are important too. In summary, the positive result of preclinical trials and clinical trials is a big motivation for further research to find a novel effective treatment for heart disease in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  CAS  PubMed  Google Scholar 

  • Anderl JN, Robey TE, Stayton PS, Murry CE (2009) Retention and biodistribution of microspheres injected into ischemic myocardium. J Biomed Mater Res A 88:704–710

    Article  PubMed  CAS  Google Scholar 

  • Antanaviciute I, Ereminiene E, Vysockas V, Rackauskas M, Skipskis V, Rysevaite K, Treinys R, Benetis R, Jurevicius J, Skeberdis VA (2015) Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction. Int J Exp Pathol 96:42–53

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A, Urbich C, Martin H et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    Article  PubMed  Google Scholar 

  • Avolio E, Meloni M, Spencer HL, Riu F, Katare R, Mangialardi G, Oikawa A, Rodriguez-Arabaolaza I, Dang Z, Mitchell K et al (2015) Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res 116:e81–e94

    Article  CAS  PubMed  Google Scholar 

  • Baez-Diaz C, Crisostomo V, Maestre J, Garcia-Lindo M, Sun F, Casado JG, Palacios I, Nunes V, Sanchez-Margallo FM (2014) Safety and efficacy assessment of intracoronary delivery of porcine cardiac stem cells in a swine model of acute myocardial infarction: comparison of two different cell doses. J Am Coll Cardiol 63

    Google Scholar 

  • Bain B (2001) Bone marrow aspiration. J Clin Pathol 54:657–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker RC, Meade TW, Berger PB, Ezekowitz M, O'Connor CM, Vorchheimer DA, Guyatt GH, Mark DB, Harrington RA (2008) The primary and secondary prevention of coronary artery disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133:776s–814s

    Article  CAS  PubMed  Google Scholar 

  • Beitnes JO, Lunde K, Brinchmann JE, Aakhus S (2011) Stem cells for cardiac repair in acute myocardial infarction. Expert Rev Cardiovasc Ther 9:1015–1025

    Article  PubMed  Google Scholar 

  • Bel A, Messas E, Agbulut O, Richard P, Samuel JL, Bruneval P, Hagege AA, Menasche P (2003) Transplantation of autologous fresh bone marrow into infarcted myocardium: a word of caution. Circulation 108(Suppl 1):Ii247–Ii252

    Google Scholar 

  • Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    Article  PubMed  Google Scholar 

  • Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL et al (2007) Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 356:1503–1516

    Article  CAS  PubMed  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet (Lond) 378:1847–1857

    Google Scholar 

  • Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D, Patti M, Colonna L, Baiocchi M, Coppola S et al (2004) Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34 + KDR+ cells. FASEB J 18:1392–1394

    CAS  PubMed  Google Scholar 

  • Boukouaci W, Lauden L, Siewiera J, Dam N, Hocine HR, Khaznadar Z, Tamouza R, Borlado LR, Charron D, Jabrane-Ferrat N et al (2014) Natural killer cell crosstalk with allogeneic human cardiac-derived stem/progenitor cells controls persistence. Cardiovasc Res 104:290–302

    Article  CAS  PubMed  Google Scholar 

  • Boyle AJ, Schulman SP, Hare JM, Oettgen P (2006) Is stem cell therapy ready for patients? Stem cell therapy for cardiac repair ready for the next step. Circulation 114:339–352

    Article  PubMed  Google Scholar 

  • Bravata DM, Gienger AL, McDonald KM, Sundaram V, Perez MV, Varghese R, Kapoor JR, Ardehali R, Owens DK, Hlatky MA (2007) Systematic review: the comparative effectiveness of percutaneous coronary interventions and coronary artery bypass graft surgery. Ann Intern Med 147:703–716

    Article  PubMed  Google Scholar 

  • Britten MB, Abolmaali ND, Assmus B, Lehmann R, Honold J, Schmitt J, Vogl TJ, Martin H, Schachinger V, Dimmeler S et al (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218

    Article  CAS  PubMed  Google Scholar 

  • Burchfield JS, Dimmeler S (2008) Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 1:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cantz T, Martin U (2010) Induced pluripotent stem cells: characteristics and perspectives. Adv Biochem Eng Biotechnol 123:107–126

    CAS  PubMed  Google Scholar 

  • Carr CA, Stuckey DJ, Tan JJ, Tan SC, Gomes RS, Camelliti P, Messina E, Giacomello A, Ellison GM, Clarke K (2011) Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks--an MRI study. PLoS One 6:e25669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ZT, Hong L, Wang H, Lai HL, Li LF, Yin QL (2013) Application of peripheral-blood-derived endothelial progenitor cell for treating ischemia-reperfusion injury and infarction: a preclinical study in rat models. J Cardiothorac Surg 8:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gu M, Zhao X, Zheng X, Qin Y, You X (2013) Deterioration of cardiac function after acute myocardial infarction is prevented by transplantation of modified endothelial progenitor cells overexpressing endothelial NO synthases. Cellular Physiol Biochem 31:355–365

    Article  CAS  Google Scholar 

  • Cheng K, Li TS, Malliaras K, Davis DR, Zhang Y, Marban E (2010) Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res 106:1570–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Hu R, Lv L, Ling L, Jiang S (2012) Erythropoietin improves the efficiency of endothelial progenitor cell therapy after myocardial infarction in mice: effects on transplanted cell survival and autologous endothelial progenitor cell mobilization. J Surg Res 176:e47–e55

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Jiang S, Hu R, Lv L (2013) Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: Activation of VEGF- PI3K/Akte-NOS pathway. Ann Clin Lab Sci 43:395–401

    CAS  PubMed  Google Scholar 

  • Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogle CR, Wise E, Meacham AM, Zierold C, Traverse JH, Henry TD, Perin EC, Willerson JT, Ellis SG, Carlson M et al (2014) Detailed analysis of bone marrow from patients with ischemic heart disease and left ventricular dysfunction: BM CD34, CD11b, and clonogenic capacity as biomarkers for clinical outcomes. Circ Res 115:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G et al (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98:10733–10738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisostomo V, Baez-Diaz C, Maestre J, Garcia-Lindo M, Sun F, Casado JG, Rodriguez-Borlado L, Abad JL, Sanchez-Margallo FM (2014) Allogeneic cardiac stem cell administration for acute myocardial infarction. A timing experimental study in swine. J Am Coll Cardiol 63

    Google Scholar 

  • Davani S, Marandin A, Mersin N, Royer B, Kantelip B, Herve P, Etievent JP, Kantelip JP (2003) Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108(Suppl 1):Ii253–Ii258

    Google Scholar 

  • Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J et al (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 102:3766–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rosa S, Seeger FH, Honold J, Fischer-Rasokat U, Lehmann R, Fichtlscherer S, Schachinger V, Dimmeler S, Zeiher AM, Assmus B (2013) Procedural safety and predictors of acute outcome of intracoronary administration of progenitor cells in 775 consecutive procedures performed for acute myocardial infarction or chronic heart failure. Circ Cardiovasc Interv 6:44–51

    Article  PubMed  Google Scholar 

  • Delling U, Lindner K, Ribitsch I, Julke H, Brehm W (2012) Comparison of bone marrow aspiration at the sternum and the tuber coxae in middle-aged horses. Can J Vet Res 76:52–56

    Google Scholar 

  • Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R, Binkley P, Buchele D, Anand I, Swingen C et al (2005) Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 112:1748–1755

    Article  PubMed  Google Scholar 

  • Donndorf P, Kaminski A, Tiedemann G, Kundt G, Steinhoff G (2012) Validating intramyocardial bone marrow stem cell therapy in combination with coronary artery bypass grafting, the PERFECT Phase III randomized multicenter trial: study protocol for a randomized controlled trial. Trials 13:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrani S, Konoplyannikov M, Ashraf M, Haider KH (2010) Skeletal myoblasts for cardiac repair. Regen Med 5:919–932

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisenstein EL, Anstrom KJ, Kong DF, Shaw LK, Tuttle RH, Mark DB, Kramer JM, Harrington RA, Matchar DB, Kandzari DE et al (2007) Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation. JAMA 297:159–168

    Article  CAS  PubMed  Google Scholar 

  • Fuentes T, Kearns-Jonker M (2013) Endogenous cardiac stem cells for the treatment of heart failure. Stem Cells Clon Adv Appl 6:1–12

    Google Scholar 

  • Fukushima S, Coppen SR, Lee J, Yamahara K, Felkin LE, Terracciano CMN, Barton PJR, Yacoub MH, Suzuki K (2008) Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat. PLoS One 3:e3071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • George JC, Goldberg J, Joseph M, Abdulhameed N, Crist J, Das H, Pompili VJ (2008) Transvenous intramyocardial cellular delivery increases retention in comparison to intracoronary delivery in a porcine model of acute myocardial infarction. J Interv Cardiol 21:424–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A (2009) Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc 84:876–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, Pouzet B, Schwartz K, Menasche P, Hagege AA (2002) Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 106:I131–I136

    PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Zhao Y, Li Y, Fan Y, Hoover-Plow J (2014) Plasminogen regulates cardiac repair after myocardial infarction through its noncanonical function in stem cell homing to the infarcted heart. J Am Coll Cardiol 63:2862–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagege AA, Marolleau JP, Vilquin JT, Alheritiere A, Peyrard S, Duboc D, Abergel E, Messas E, Mousseaux E, Schwartz K et al (2006) Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 114:I108–I113

    Article  PubMed  Google Scholar 

  • Haider H, Ye L, Jiang S, Ge R, Law PK, Chua T, Wong P, Sim EK (2004) Angiomyogenesis for cardiac repair using human myoblasts as carriers of human vascular endothelial growth factor. J. Mol Med (Berl) 82:539–549

    Google Scholar 

  • Hale SL, Dai W, Dow JS, Kloner RA (2008) Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes: a quantitative assessment. Life Sci 83:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare JM, Fishman JE, Gerstenblith G et al (2012) Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The poseidon randomized trial. JAMA 308:2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata H, Matsumiya G, Miyagawa S, Kondoh H, Kawaguchi N, Matsuura N, Shimizu T, Okano T, Matsuda H, Sawa Y (2006) Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 132:918–924

    Article  PubMed  Google Scholar 

  • Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107:913–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata Y, Sata M, Motomura N, Takanashi M, Suematsu Y, Ono M, Takamoto S (2005) Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun 327:609–614

    Article  CAS  PubMed  Google Scholar 

  • Ichim TE, Solano F, Lara F, Rodriguez JP, Cristea O, Minev B, Ramos F, Woods EJ, Murphy MP, Alexandrescu DT et al (2010) Combination stem cell therapy for heart failure. Int Arch Med 3:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Google Scholar 

  • Jansen Of Lorkeers SJ, Eding JE, Vesterinen HM, van der Spoel TI, Sena ES, Duckers HJ, Doevendans PA, Macleod MR, Chamuleau SA (2015) Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies. Circ Res 116:80–86

    Google Scholar 

  • Kanazawa H, Tseliou E, Malliaras K, Yee K, Dawkins JF, De Couto G, Smith RR, Kreke M, Seinfeld J, Middleton RC et al (2015) Cellular postconditioning: allogeneic cardiosphere-derived cells reduce infarct size and attenuate microvascular obstruction when administered after reperfusion in pigs with acute myocardial infarction. Circ Heart Fail 8:322–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang KT, Coggins M, Xiao C, Rosenzweig A, Bischoff J (2013) Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis 16:773–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karantalis V, Balkan W, Schulman IH, Hatzistergos KE, Hare JM (2012) Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol 303:H256–H270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehat I, Gepstein A, Spira A, Itskovitz-Eldor J, Gepstein L (2002) High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res 91:659–661

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Kutala VK, Vikram DS, Wisel S, Chacko SM, Kuppusamy ML, Mohan IK, Zweier JL, Kwiatkowski P, Kuppusamy P (2007) Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. Am J Physiol Heart Circ Physiol 293:H2129–H2139

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Joo HJ, Kim M, Choi S-C, Park C-Y, Lee JI, Hong SJ, Lim D-S (2015a) Abstract 15623: transplantation of adipose-derived stem cells sheet for accelerated neovascularization and engraftment in acute myocardial infarction rats. Circulation 132:A15623

    Google Scholar 

  • Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV et al (2015b) Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 116:e40–e50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  PubMed  Google Scholar 

  • Kraitchman DL, Bulte JW (2008) Imaging of stem cells using MRI. Basic Res Cardiol 103:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmenkin A, Liang H, Xu G, Pfannkuche K, Eichhorn H, Fatima A, Luo H, Saric T, Wernig M, Jaenisch R et al (2009) Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 23:4168–4180

    Article  CAS  PubMed  Google Scholar 

  • Lauden L, Boukouaci W, Borlado LR, Lopez IP, Sepulveda P, Tamouza R, Charron D, Al-Daccak R (2013) Allogenicity of human cardiac stem/progenitor cells orchestrated by programmed death ligand 1. Circ Res 112:451–464

    Article  CAS  PubMed  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leistner DM, Fischer-Rasokat U, Honold J, Seeger FH, Schachinger V, Lehmann R, Martin H, Burck I, Urbich C, Dimmeler S et al (2011) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI): final 5-year results suggest long-term safety and efficacy. Clinical Res Cardiol 100:925–934

    Article  Google Scholar 

  • Leistner DM, Seeger FH, Fischer A, Roxe T, Klotsche J, Iekushi K, Seeger T, Assmus B, Honold J, Karakas M et al (2012) Elevated levels of the mediator of catabolic bone remodeling RANKL in the bone marrow environment link chronic heart failure with osteoporosis. Circ Heart Fail 5:769–777

    Article  CAS  PubMed  Google Scholar 

  • Lezaic L, Socan A, Poglajen G, Peitl PK, Sever M, Cukjati M, Cernelc P, Wu JC, Haddad F, Vrtovec B (2015) Intracoronary transplantation of CD34(+) cells is associated with improved myocardial perfusion in patients with nonischemic dilated cardiomyopathy. J Card Fail 21:145–152

    Article  CAS  PubMed  Google Scholar 

  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Zhang J, Mohabeer MK, Rao V, Ivanov J (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62:654–660, discussion 660–651

    Article  CAS  PubMed  Google Scholar 

  • Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102:8966–8971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O/Malley R, Castanon R, Klugman S et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73

    Google Scholar 

  • Losordo DW, Schatz RA, White CJ, Udelson JE, Veereshwarayya V, Durgin M, Poh KK, Weinstein R, Kearney M, Chaudhry M et al (2007) Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation 115:3165–3172

    Article  PubMed  Google Scholar 

  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D et al (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  PubMed  Google Scholar 

  • Luepker RV (2011) Cardiovascular disease: rise, fall, and future prospects. Annu Rev Public Health 32:1–3

    Article  PubMed  Google Scholar 

  • Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66:45–54

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie TC, Flake AW (2002) Human mesenchymal stem cells: insights from a surrogate in vivo assay system. Cells Tissues Organs 171:90–95

    Article  PubMed  Google Scholar 

  • Madonna R, De Caterina R (2010) Adipose tissue: a new source for cardiovascular repair. J Cardiovasc Med (Hagerstown) 11:71–80

    Google Scholar 

  • Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099–1103

    Article  CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkar RR, Lill M, Chen PS (2003) Stem cell therapy for myocardial repair: is it arrhythmogenic? J Am Coll Cardiol 42:2070–2072

    Article  PubMed  Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet (Lond) 379:895–904

    Google Scholar 

  • Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, Galang G, Zhang Y, Schoenhoff F, Van Eyk J et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–112

    Article  CAS  PubMed  Google Scholar 

  • Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marban L, Mendizabal A, Cingolani E, Johnston PV et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63:110–122

    Article  PubMed  Google Scholar 

  • Marelli D, Desrosiers C, el-Alfy M, Kao RL, Chiu RC (1992) Cell transplantation for myocardial repair: an experimental approach. Cell Transplant 1:383–390

    Google Scholar 

  • Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154

    Article  CAS  PubMed  Google Scholar 

  • Mathiasen AB, Haack-Sorensen M, Jorgensen E, Kastrup J (2013) Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina--final 3-year follow-up. Int J Cardiol 170:246–251

    Article  PubMed  Google Scholar 

  • Mazo M, Arana M, Pelacho B, Prosper F (2012) Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap. Stem Cells Int 2012:175979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Menasche P (2003) Cell transplantation in myocardium. Ann Thorac Surg 75:S20–S28

    Article  PubMed  Google Scholar 

  • Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    Article  CAS  PubMed  Google Scholar 

  • Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell AJ, Sabondjian E, Blackwood KJ, Sykes J, Deans L, Feng Q, Stodilka RZ, Prato FS, Wisenberg G (2013) Comparison of the myocardial clearance of endothelial progenitor cells injected early versus late into reperfused or sustained occlusion myocardial infarction. Int J Cardiovasc Imaging 29:497–504

    Article  PubMed  Google Scholar 

  • Müller-Ehmsen J, Leor J, Kedes L, Peterson KL, Kloner RA (2004) Fetal and Neonatal Cardiomyocyte Transplantation for the Treatment of Myocardial Infarction. In: Dhalla NS, Rupp H, Angel A, Pierce GN (eds) Pathophysiology of cardiovascular disease. Springer US, Boston, pp 535–544

    Chapter  Google Scholar 

  • Murry CE, Field LJ, Menasche P (2005) Cell-based cardiac repair: reflections at the 10-year point. Circulation 112:3174–3183

    Article  PubMed  Google Scholar 

  • Murry CE, Whitney ML, Reinecke H (2002) Muscle cell grafting for the treatment and prevention of heart failure. J Card Fail 8:S532–S541

    Article  PubMed  Google Scholar 

  • Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, Banys RP, Urbanczyk M, Kadzielski A, Trystula M et al (2015) Myocardial regeneration strategy using Wharton’s jelly mesenchymal stem cells as an off-the-shelf ‘unlimited’ therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. Postepy Kardiol Interwencyjnej 11:100–107.

    Google Scholar 

  • Nagata H, Ii M, Kohbayashi E, Hoshiga M, Hanafusa T, Asahi M (2016) Cardiac adipose-derived stem cells exhibit high differentiation potential to cardiovascular cells in C57BL/6 mice. Stem Cells Transl Med 5:141–151

    Article  PubMed  Google Scholar 

  • Narva E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28:371–377

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Yoon JY, Ko SM, Jin SA, Kim JH, Cho CH, Kim JM, Lee JH, Choi SW, Seong IW et al (2011) Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp Mol Med 43:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AN et al (2016) Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial. Lancet 387(10036):2412–2421

    Google Scholar 

  • Pelacho B, Nakamura Y, Zhang J, Ross J, Heremans Y, Nelson-Holte M, Lemke B, Hagenbrock J, Jiang Y, Prosper F et al (2007) Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction. J Tissue Eng Regen Med 1:51–59

    Article  CAS  PubMed  Google Scholar 

  • Perin EC (2006) Stem cell therapy for cardiovascular disease. Tex Heart Inst J 33:204–208

    PubMed  PubMed Central  Google Scholar 

  • Perin EC, Borow KM, Silva GV, DeMaria AN, Marroquin OC, Huang PP, Traverse JH, Krum H, Skerrett D, Zheng Y et al (2015) A phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res 117:576–584

    Article  CAS  PubMed  Google Scholar 

  • Perin EC, Sanz-Ruiz R, Sanchez PL, Lasso J, Perez-Cano R, Alonso-Farto JC, Perez-David E, Fernandez-Santos ME, Serruys PW, Duckers HJ et al (2014) Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial. Am Heart J 168:88.e82–95.e82

    Google Scholar 

  • Perin EC, Silva GV, Assad JA, Vela D, Buja LM, Sousa AL, Litovsky S, Lin J, Vaughn WK, Coulter S et al (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44:486–495

    Article  CAS  PubMed  Google Scholar 

  • Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Silva GV, Lai D, Thomas JD, Kronenberg MW et al (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307:1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Article  CAS  PubMed  Google Scholar 

  • Poglajen G, Sever M, Cukjati M, Cernelc P, Knezevic I, Zemljic G, Haddad F, Wu JC, Vrtovec B (2014) Effects of transendocardial CD34+ cell transplantation in patients with ischemic cardiomyopathy. Circ Cardiovasc Interv 7:552–559

    Article  CAS  PubMed  Google Scholar 

  • Reinecke H, Poppa V, Murry CE (2002) Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 34:241–249

    Article  CAS  PubMed  Google Scholar 

  • Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100:193–202

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem Cell Res Ther 1:1–12

    Article  CAS  Google Scholar 

  • Rosenstrauch D, Poglajen G, Zidar N, Gregoric ID (2005) Stem Cell Therapy for Ischemic Heart Failure. Tex Heart Inst J 32:339–347

    PubMed  PubMed Central  Google Scholar 

  • Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, Abolmaali ND, Vogl TJ, Hofmann WK, Martin H et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44:1690–1699

    Article  PubMed  Google Scholar 

  • Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, Yu J, Corti R, Mathey DG, Hamm CW et al (2006) Intracoronary bone marrow–derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221

    Article  PubMed  Google Scholar 

  • Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW et al (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 27:2775–2783

    Article  PubMed  Google Scholar 

  • Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B et al (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30:2722–2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Segers VFM, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  CAS  PubMed  Google Scholar 

  • Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, Stahle E, Feldman TE, van den Brand M, Bass EJ et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972

    Article  CAS  PubMed  Google Scholar 

  • Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  CAS  PubMed  Google Scholar 

  • Sherman W, Martens TP, Viles-Gonzalez JF, Siminiak T (2006) Catheter-based delivery of cells to the heart. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S57–S64

    Article  PubMed  Google Scholar 

  • Silva GV, Fernandes MR, Cardoso CO, Sanz RR, Oliveira EM, Jimenez-Quevedo P, Lopez J, Angeli FS, Zheng Y, Willerson JT et al (2011) A dosing study of bone marrow mononuclear cells for transendocardial injection in a pig model of chronic ischemic heart disease. Tex Heart Inst J 38:219–224

    PubMed  PubMed Central  Google Scholar 

  • Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, KaÅ‚mucki P, Kurpisz M (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26:1188–1195

    Article  PubMed  Google Scholar 

  • Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, Steinhoff G (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet (Lond) 361:45–46

    Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kogler G, Wernet P (2001) Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 126:932–938

    Google Scholar 

  • Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  • Suzuki E, Fujita D, Takahashi M, Oba S, Nishimatsu H (2015) Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease. World J Cardiol 7:454–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M et al (2008) Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 52:1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Tambara K, Sakakibara Y, Sakaguchi G, Lu F, Premaratne GU, Lin X, Nishimura K, Komeda M (2003) Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation 108(Suppl 1):Ii259–Ii263

    Google Scholar 

  • Tang XL, Rokosh G, Sanganalmath SK, Tokita Y, Keith MC, Shirk G, Stowers H, Hunt GN, Wu W, Dawn B et al (2015) Effects of intracoronary infusion of escalating doses of cardiac stem cells in rats with acute myocardial infarction. Circ Heart Fail 8:757–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao B, Cui M, Wang C, Ma S, Wu F, Yi F, Qin X, Liu J, Wang H, Wang Z et al (2015) Percutaneous intramyocardial delivery of mesenchymal stem cells induces superior improvement in regional left ventricular function compared with bone marrow mononuclear cells in porcine myocardial infarcted heart. Theranostics 5:196–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H et al (2007a) Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 352:635–641

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, Ashihara E, Takehara N, Nomura T, Honsho S, Nakagami T, Morikawa S, Takahashi T, Ueyama T, Matsubara H et al (2007b) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120:1791–1800

    Article  CAS  PubMed  Google Scholar 

  • Thompson CA, Nasseri BA, Makower J, Houser S, McGarry M, Lamson T, Pomerantseva I, Chang JY, Gold HK, Vacanti JP et al (2003) Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 41:1964–1971

    Article  PubMed  Google Scholar 

  • Thompson CA, Reddy VK, Srinivasan A, Houser S, Hayase M, Davila A, Pomerantsev E, Vacanti JP, Gold HK (2005) Left ventricular functional recovery with percutaneous, transvascular direct myocardial delivery of bone marrow-derived cells. J Heart Lung Transplant 24:1385–1392

    Article  PubMed  Google Scholar 

  • Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse HF, Kwong YL, Chan JK, Lo G, Ho CL, Lau CP (2003) Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet (Lond) 361:47–49

    Google Scholar 

  • van Ramshorst J, Bax JJ, Beeres SL, Dibbets-Schneider P, Roes SD, Stokkel MP, de Roos A, Fibbe WE, Zwaginga JJ, Boersma E et al (2009) Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 301:1997–2004

    Article  PubMed  Google Scholar 

  • Vrtovec B, Poglajen G, Lezaic L, Sever M, Domanovic D, Cernelc P, Socan A, Schrepfer S, Torre-Amione G, Haddad F et al (2013a) Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ Res 112:165–173

    Article  CAS  PubMed  Google Scholar 

  • Vrtovec B, Poglajen G, Lezaic L, Sever M, Socan A, Domanovic D, Cernelc P, Torre-Amione G, Haddad F, Wu JC (2013b) Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation 128:S42–S49

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A et al (2013) Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis 4:e950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  • Wert Gd, Mummery C (2003) Human embryonic stem cells: research, ethics and policy. Hum Reprod 18:672–682

    Article  PubMed  Google Scholar 

  • Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, patho physiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109:923–940

    Google Scholar 

  • Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW et al (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223

    Article  PubMed  Google Scholar 

  • Wollert KC, Drexler H (2010) Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 7:204–215

    Article  PubMed  Google Scholar 

  • Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet (Lond) 364:141–148

    Google Scholar 

  • Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 42:441–448

    Article  CAS  PubMed  Google Scholar 

  • Yasuda T, Weisel RD, Kiani C, Mickle DA, Maganti M, Li RK (2005) Quantitative analysis of survival of transplanted smooth muscle cells with real-time polymerase chain reaction. J Thorac Cardiovasc Surg 129:904–911

    Article  PubMed  Google Scholar 

  • Ye L, Haider HK, Jiang S, Tan RS, Ge R, Law PK, Sim EKW (2007) Improved angiogenic response in pig heart following ischaemic injury using human skeletal myoblast simultaneously expressing VEGF165 and angiopoietin-1. Eur J Heart Fail 9:15–22

    Article  CAS  PubMed  Google Scholar 

  • Yee K, Malliaras K, Kanazawa H, Tseliou E, Cheng K, Luthringer DJ, Ho CS, Takayama K, Minamino N, Dawkins JF et al (2014) Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy. PLoS One 9:e113805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh ETH, Zhang S (2006) A novel approach to studying the transformation of human stem cells into cardiac cells in vivo. Can J Cardiol 22:66B–71B

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LX, DeNicola M, Qin X, Du J, Ma J, Tina Zhao Y, Zhuang S, Liu PY, Wei L, Qin G et al (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358–C372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhao L, Shen L, Xu D, Huang B, Wang Q, Lin J, Zou Y, Ge J (2012) Comparison of various niches for endothelial progenitor cell therapy on ischemic myocardial repair: coexistence of host collateralization and Akt-mediated angiogenesis produces a superior microenvironment. Arterioscler Thromb Vasc Biol 32:910–923

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Singh AK, Hoyt RF Jr, Wang S, Yu Z, Hunt T, Kindzelski B, Corcoran PC, Mohiuddin MM, Horvath KA (2014) Regulatory T cells enhance mesenchymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. J Thorac Cardiovasc Surg 148:1131–1137; discussion 1117

    Google Scholar 

  • Zhu WZ, Hauch KD, Xu C, Laflamme MA (2009) Human embryonic stem cells and cardiac repair. Transplant Rev (Orlando) 23:53–68

    Article  CAS  Google Scholar 

  • Zohlnhofer D, Ott I, Mehilli J, Schomig K, Michalk F, Ibrahim T, Meisetschlager G, von Wedel J, Bollwein H, Seyfarth M et al (2006) Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 295:1003–1010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Van Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pham, T.LB., Vu, N.B., Van Pham, P. (2017). Stem Cell Therapy for Ischemic Heart Disease. In: Pham, P. (eds) Liver, Lung and Heart Regeneration. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-46693-4_10

Download citation

Publish with us

Policies and ethics