Skip to main content

A Review of EEG Signal Simulation Methods

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9950))

Included in the following conference series:

  • 2683 Accesses

Abstract

This paper describes EEG signal simulation methods. Three main methods have been included in this study: Markov Process Amplitude (MPA), Artificial Neural Network (ANN), and Autoregressive (AR) models. Each method is described procedurally, along with mathematical expressions. By the end of the description of each method, the limitations and benefits are described in comparison with other methods. MPA comprises of three variations; first-order MPA, nonlinear MPA, and adaptive MPA. ANN consists of two variations; feed forward back-propagation NN and multilayer feed forward with error back-propagation NN with embedded driving signal. AR model based filtering has been considered with its variation, genetic algorithm based on autoregressive moving average (ARMA) filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    signum function or sgn (x)

    $$ sgn(x) = {\left\{ \begin{array}{ll} 1 &{} \quad \text {if } x \ge 0\\ -1 &{} \quad \text {if } x < 0\\ \end{array}\right. }. $$

References

  1. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms, and Applications. Prentice-Hall Int., Inc., New Jersey (1996)

    Google Scholar 

  2. Sörnmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neurological Applications. Elsevier Academic Press, Massachusetts (2005)

    Google Scholar 

  3. Barlow, J.S.: The Electroencephalogram: Its Patterns and Origins. MIT Press, Cambridge (1993)

    Google Scholar 

  4. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, England (2007)

    Book  Google Scholar 

  5. Fabri, S.G., Camilleri, K.P., Cassar, T.: Parametric modelling of EEG data for the identification of mental tasks. In: Biomedical Engineering, Trends in Electronics, Communications and Software, pp. 367–386. InTech (2011)

    Google Scholar 

  6. Al-Nashash, H., Al-Assaf, Y., Paul, J., Thakor, N.: EEG signal modeling using adaptive Markov process amplitude. IEEE Trans. Biomed. Eng. 51(5), 744–751 (2004)

    Article  Google Scholar 

  7. Bai, O., Nakamura, M., Ikeda, A., Shibasaki, H.: Nonlinear Markov process amplitude EEG model for nonlinear coupling interaction of spontaneous EEG. IEEE Trans. Biomed. Eng. 47(9), 1141–1146 (2000)

    Article  Google Scholar 

  8. Fell, J., Kaplan, A., Darkhovsky, B., Roschke, J.: EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy. Acta Neurolobiol. 60, 87–108 (2000)

    Google Scholar 

  9. Dynkin, E.B., Brown, D.E., Köváry, T. (eds.): Theory of Markov Processes. Pergamon Press Ltd., London (1960)

    MATH  Google Scholar 

  10. Hernandez-Lerma, O.: Adaptive Markov Control Processes. Springer, New York (1989)

    Book  MATH  Google Scholar 

  11. Haykin, S.: Neural Networks and Learning Machines. Pearson Prentice Hall, New Jersey (2009)

    Google Scholar 

  12. Adeli, H., Hung, S.L.: Machine Learning - Neural Networks, Genetic Algorithms, and Fuzzy Systems. Wiley, New York (1995)

    MATH  Google Scholar 

  13. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks: spiking neurons and learning algorithms. In: Automated EEG-Based Diagnosis of Neurological Disorders - Inventing the Future of Neurology, pp. 240–270. CRC Press, Boca Raton (2010)

    Google Scholar 

  14. Tsay, R.S.: Analysis of Financial Time Series. Wiley, New Jersey (2005)

    Book  MATH  Google Scholar 

  15. Wiener, N.: Nonlinear Problems in Random Theory. MIT Press, Cambridge (1958)

    MATH  Google Scholar 

  16. Ning, T., Bronzino, J.D.: Nonlinear analysis of the hippocampal subfiels of CA1 and the dentate gyrus. IEEE Trans. Biomed. Eng. 40(9), 870–876 (1993)

    Article  Google Scholar 

  17. Welch, P.D.: The use of fast fourier transform for the estimation of power spectra: a method based on time average over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU–15, 70–73 (1967)

    Article  Google Scholar 

  18. Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice Hall, New Jersey (1975)

    Google Scholar 

  19. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. The Comput. J. 6, 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms, pp. 434–436. Oxford University Press, Oxford (1995)

    Google Scholar 

  21. Widrow, B., Sterns, S.D.: Adaptive Signal Processing. Prentice-Hall, New Jersey (1985)

    Google Scholar 

  22. Al-Nashash, H.A., Zalzala, A.M.S., Thakor, N.V.: A neural networks approach to EEG signals modeling. In: 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico (2003)

    Google Scholar 

  23. Tomasevic, N.M., Neskovic, A.M., Neskovic, N.J.: Artifical neural network based approach to EEG signal simulation. Int. J. Neural Syst. 22(3), 1–16 (2012)

    Article  Google Scholar 

  24. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Detroit (1995)

    MATH  Google Scholar 

  25. Liu, J.N.K., Yu, Y.X.: Support vector regression with kernal mahalanobis measure for financial forecast. In: Pedrycz, W., Chen, S.M. (eds.) Time Series Analysis, Modeling and Applications 2013. ISRL, vol. 47, pp. 2014–2027. Springer, Heidelberg (2013)

    Google Scholar 

  26. Széliga, M.I., Verdes, P.F., Granitto, P.M., Ceccatto, H.A.: Artificial neural network learning of nonstationary behavior in time series. Int. J. Neural Syst. 13(2), 103–109 (2003)

    Article  MATH  Google Scholar 

  27. Chatfield, C.: The Analysis of Time Series. CRC Press, Florida (1996)

    MATH  Google Scholar 

  28. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: IEEE First International Joint Conference on Neural Networks, vol. 3 (1990)

    Google Scholar 

  29. Bracewell, R.: The sign function, \(sgn\) \(x\). In: The Fourier Transform and Its Application, pp. 65–66. McGraw-Hill, New York (1999)

    Google Scholar 

  30. Frank, H., Althoen, S.C.: Statistics: Concepts and Applications. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  31. Čížek, P.: Non linear regression modeling. In: Gentle, J.E., Härdle, W., Mori, Y. (eds.) Handbook of Computational Statistics Concepts and Methods. Springer Handbooks of Computational Statistics, pp. 621–655. Springer, Heidelberg (2004)

    Google Scholar 

  32. Leon-Garcia, A.: Probability, Statistics, and Random Processes for Electrical Engineering. Pearson Education Inc., Upper Saddle River (2008)

    Google Scholar 

  33. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  34. Bendat, J.S., Piersol, A.G.: Random Data: Analysis and Measurement Procedures. Wiley, Hoboken (2010)

    Book  MATH  Google Scholar 

  35. Young, D.J., Beaulieu, N.C.: Power margin quality measures for correlated random variates derived from the normal distribution. IEEE Trans. Inf. Theory 49(1), 241–252 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Crespo, P.M., Jimenez, J.: Computer simulation of radio channels using a harmonic decomposition technique. IEEE Trans. Veh. Tech. 44(3), 414–419 (1995)

    Article  Google Scholar 

  37. Salivahanan, S., Vallavaraj, A., Gnanapriya, C.: Digital Signal Processing. Tata Mcgraw-Hill Publishing Company Limited, New Delhi (2000)

    Google Scholar 

  38. Doležal, J., Štastný, J., Sovka, P.: Modeling and recognition of movement related EEG signal. In: International Conference on Applied Electronics (2006)

    Google Scholar 

  39. Janeczko, C., Lopes, H.S.: A genetic approach to ARMA filter synthesis for EEG signal simulation. In: Proceedings of the 2000 Congress on Evolutionary Computation, La Jolla, California (2000)

    Google Scholar 

  40. Doležal, J., Štastný, J., Sovka, P.: Recognition of direction of finger movement from EEG signal using Markov models. In: The 3rd European Medical and Biological Engineering Conference, EMBEC, Prague, Czech Republic (2005)

    Google Scholar 

  41. Marple, S.L.: Digital Spectral Analysis with Applications. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  42. Vaz, F., Oliveira, P.G., Principe, J.C.: A study on the best order for autoregressive EEG modeling. Int. J. Bio-Med. Comput. 20, 41–50 (1987)

    Article  Google Scholar 

  43. Manolakis, D.G., Ingle, V.K., Kogon, S.M.: Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing. Artech House, Norwood (2005)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the HiCoE grant for CISIR (0153CA-002) and FRGS/1/2014/SG04/UTP/02/1 from the Ministry of Education (MoE) of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahima Faye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Noorzi, M.I., Faye, I. (2016). A Review of EEG Signal Simulation Methods. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46681-1_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46680-4

  • Online ISBN: 978-3-319-46681-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics