A Scalable Patch-Based Approach for RGB-D Face Recognition

  • Nesrine GratiEmail author
  • Achraf Ben-Hamadou
  • Mohamed Hammami
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)


This paper presents a novel approach for face recognition using low cost RGB-D cameras under challenging conditions. In particular, the proposed approach is based on salient points to extract local patches independently to the face pose. The classification is performed using a scalable sparse representation classification by an adaptive and dynamic dictionaries selection. The experimental results proved that the proposed algorithm achieves significant accuracy on three different RGB-D databases and competes with known approaches in the literature.


Face recognition RGB-D data Sparse representation classification Dynamic dictionary Kinect 


  1. 1.
    Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi: 10.1007/11744023_32 CrossRefGoogle Scholar
  2. 2.
    Ben-Hamadou, A., Soussen, C., Daul, C., Blondel, W., Wolf, D.: Flexible calibration of structured-light systems projecting point patterns. Comput. Vis. Image Underst. 117(10), 1468–1481 (2013)CrossRefGoogle Scholar
  3. 3.
    Boutellaa, E., Hadid, A., Bengherabi, M., Ait-Aoudia, S.: On the use of kinect depth data for identity, gender and ethnicity classification from facial images. Pattern Recogn. Lett. 68, 270–277 (2015)CrossRefGoogle Scholar
  4. 4.
    Ciaccio, C., Wen, L., Guo, G.: Face recognition robust to head pose changes based on the RGB-D sensor. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6. IEEE (2013)Google Scholar
  5. 5.
    Dai, X., Yin, S., Ouyang, P., Liu, L., Wei, S.: A multi-modal 2D + 3D face recognition method with a novel local feature descriptor. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 657–662. IEEE (2015)Google Scholar
  6. 6.
    Faltemier, T.C., Bowyer, K.W., Flynn, P.J.: A region ensemble for 3-D face recognition. IEEE Trans. Inf. Forensics Secur. 3(1), 62–73 (2008)CrossRefGoogle Scholar
  7. 7.
    Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101(3), 437–458 (2013)CrossRefGoogle Scholar
  8. 8.
    Goswami, G., Vatsa, M., Singh, R.: RGB-D face recognition with texture and attribute features. IEEE Trans. Inf. Forensics Securi. 9(10), 1629–1640 (2014)CrossRefGoogle Scholar
  9. 9.
    Hsu, G.S.J., Liu, Y.L., Peng, H.C., Wu, P.X.: RGB-D-based face reconstruction and recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2110–2118 (2014)CrossRefGoogle Scholar
  10. 10.
    Huynh, T., Min, R., Dugelay, J.-L.: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7728, pp. 133–145. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37410-4_12 CrossRefGoogle Scholar
  11. 11.
    Kannala, J., Rahtu, E.: BSIF: Binarized statistical image features. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 1363–1366. IEEE (2012)Google Scholar
  12. 12.
    Li, B.Y., Mian, A., Liu, W., Krishna, A.: Using kinect for face recognition under varying poses, expressions, illumination and disguise. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 186–192. IEEE (2013)Google Scholar
  13. 13.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Rekik, A., Ben-Hamadou, A., Mahdi, W.: 3D face pose tracking using low quality depth cameras. In: VISAPP (2), pp. 223–228 (2013)Google Scholar
  15. 15.
    Rekik, A., Hamadou, A., Mahdi, W.: Human machine interaction via visual speech spotting. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 566–574. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Rekik, A., Ben-Hamadou, A., Mahdi, W.: Unified system for visual speech recognition and speaker identification. In: Battiato, S., et al. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 381–390. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25903-1_33 CrossRefGoogle Scholar
  17. 17.
    Rekik, A., Ben-Hamadou, A., Mahdi, W.: An adaptive approach for lip-reading using image and depth data. Multimedia Tools Appl. 75(14), 8609–8636 (2016)CrossRefGoogle Scholar
  18. 18.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2879–2886. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nesrine Grati
    • 1
    Email author
  • Achraf Ben-Hamadou
    • 2
  • Mohamed Hammami
    • 1
  1. 1.Multimedia InfoRmation Systems and Advanced Computing Laboratory (MIRACL)Sfax UniversitySfaxTunisia
  2. 2.Driving Assistance Research Center, Valeo VisionBobignyFrance

Personalised recommendations