Skip to main content

Bihemispheric Cerebellar Spiking Network Model to Simulate Acute VOR Motor Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9950))

Included in the following conference series:

Abstract

The vestibuloocular reflex (VOR) is an adaptive control system. The cerebellar flocculus is intimately involved in the VOR adaptive motor control. The cerebellar flocculus has bihemispheric architecture and the several lines of unilateral lesion study indicated that each cerebellar hemisphere plays different roles in the leftward and rightward eye movement control and learning. However, roles of bihemispheric cerebellar architecture underlying the VOR motor learning have not been fully understood. Here we configure an anatomically/physiologically plausible bihemispheric cerebellar neuronal network model composed of spiking neurons as a platform to unveil roles and capacities of bihemispheric cerebellar architecture in the VOR motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagao, S., Kitazawa, H.: Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience 118(2), 563–570 (2003)

    Article  Google Scholar 

  2. Staube, A., Scheuerer, W., Eggert, T.: Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Ann. Neurol. 42, 891–898 (1997)

    Article  Google Scholar 

  3. Ito, M., Jastreboff, P.J., Miyashita, Y.: Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp. Brain Res. 45(1–2), 233–242 (1982)

    Google Scholar 

  4. Tabata, H., Yamamoto, K., Kawato, M.: Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. J. Neurophysiol. 87, 2176–2189 (2002)

    Article  Google Scholar 

  5. Inagaki, K., Hirata, Y.: The model of vestibuloocular reflex explicitly describing cerebellar neuronal network model. Inst. Electron. Inf. Commun. Eng. J94-D(5), 1293–1304 (2007)

    Google Scholar 

  6. Inagaki, K., Kobayashi, S., Hirata, Y.: Analysis of frequency selective vestibuloocular reflex motor learning using cerebellar spiking neuron network mode. Inst. Electron. Inf. Commun. Eng. J94-D(5), 919–928 (2011)

    Google Scholar 

  7. D’Angelo, E., Mapelli, L., Casellato, C., Garrido, J.A., Luque, N., Monaco, J., Prestori, F., Pedrocchi, A., Ros, E.: Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. Cerebellum 15(2), 1–13 (2015)

    Google Scholar 

  8. Yamazaki, T., Nagao, S., Lennon, W., Tanaka, S.: Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc. Natl. Acad. Sci. U.S.A. 112, 3456–3541 (2015)

    Article  Google Scholar 

  9. Hirata, Y., Highstein, S.M.: Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J. Neurophysiol. 85, 2267–2288 (2001)

    Google Scholar 

  10. Eccles, J.C., Ito, M., Szentagothai, J.: The Cerebellum as a Neuronal Machine. Springer, Heidelberg (1967)

    Book  Google Scholar 

  11. Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)

    Article  Google Scholar 

  12. Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10, 25–61 (1972)

    Article  Google Scholar 

  13. Ito, M.: The Cerebellum and Neural Control. Raven Press, New York (1984)

    Google Scholar 

  14. Lisberger, S.G., Fuchs, A.F.: Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41, 764–777 (1978)

    Google Scholar 

  15. Ito, M.: Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989)

    Article  Google Scholar 

  16. Ito, M.: The Cerebellum: Brain for an Implicit Self. Financial Press, Upper Saddle River (2012)

    Google Scholar 

  17. Hirano, T.: Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119, 141–144 (1990)

    Article  Google Scholar 

  18. Sakurai, M.: Synaptic modification of parallel fibre - Purkinje cell transmission in in virto guinea-pig cerebellar slices. J. Physiol. 394, 463–480 (1987)

    Article  Google Scholar 

  19. Kuki, Y., Hirata, Y., Blazquez, P.M., Heiney, S.A., Highstein, S.M.: Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. NeuroReport 15(6), 1007–1011 (2004)

    Article  Google Scholar 

  20. Yoshikawa, A., Hirata, Y.: Different mechanisms for gain-up and gain-down vestibuloocular reflex motor learning revealed by directional differential learning tasks. Inst. Electron. Inf. Commun. Eng. J92-D(1), 176–185 (2009)

    Google Scholar 

  21. Hirata, Y., Lockard, J.M., Highstein, S.M.: Capacity of vertical VOR adaptation in squirrel monkey. J. Neurophysiol. 88, 3194–3207 (2002)

    Article  Google Scholar 

  22. Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.S., McNamara, J.O., Williams, S.M.: Neuroscience, 2nd edn. Sinauer Associates Inc., Sunderland (2004)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant-In-Aid for Scientific Research (B) (24300115 and 16H02901, YH) and Grant-in-Aid for Young Scientists (B) (15K16086, KI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichiro Inagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Inagaki, K., Hirata, Y. (2016). Bihemispheric Cerebellar Spiking Network Model to Simulate Acute VOR Motor Learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46681-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46680-4

  • Online ISBN: 978-3-319-46681-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics