Advertisement

Bihemispheric Cerebellar Spiking Network Model to Simulate Acute VOR Motor Learning

  • Keiichiro InagakiEmail author
  • Yutaka Hirata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)

Abstract

The vestibuloocular reflex (VOR) is an adaptive control system. The cerebellar flocculus is intimately involved in the VOR adaptive motor control. The cerebellar flocculus has bihemispheric architecture and the several lines of unilateral lesion study indicated that each cerebellar hemisphere plays different roles in the leftward and rightward eye movement control and learning. However, roles of bihemispheric cerebellar architecture underlying the VOR motor learning have not been fully understood. Here we configure an anatomically/physiologically plausible bihemispheric cerebellar neuronal network model composed of spiking neurons as a platform to unveil roles and capacities of bihemispheric cerebellar architecture in the VOR motor learning.

Keywords

Eye movement Spike timing dependent plasticity Computer simulation Cerebellar lesion 

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant-In-Aid for Scientific Research (B) (24300115 and 16H02901, YH) and Grant-in-Aid for Young Scientists (B) (15K16086, KI).

References

  1. 1.
    Nagao, S., Kitazawa, H.: Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience 118(2), 563–570 (2003)CrossRefGoogle Scholar
  2. 2.
    Staube, A., Scheuerer, W., Eggert, T.: Unilateral cerebellar lesions affect initiation of ipsilateral smooth pursuit eye movements in humans. Ann. Neurol. 42, 891–898 (1997)CrossRefGoogle Scholar
  3. 3.
    Ito, M., Jastreboff, P.J., Miyashita, Y.: Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Exp. Brain Res. 45(1–2), 233–242 (1982)Google Scholar
  4. 4.
    Tabata, H., Yamamoto, K., Kawato, M.: Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. J. Neurophysiol. 87, 2176–2189 (2002)CrossRefGoogle Scholar
  5. 5.
    Inagaki, K., Hirata, Y.: The model of vestibuloocular reflex explicitly describing cerebellar neuronal network model. Inst. Electron. Inf. Commun. Eng. J94-D(5), 1293–1304 (2007)Google Scholar
  6. 6.
    Inagaki, K., Kobayashi, S., Hirata, Y.: Analysis of frequency selective vestibuloocular reflex motor learning using cerebellar spiking neuron network mode. Inst. Electron. Inf. Commun. Eng. J94-D(5), 919–928 (2011)Google Scholar
  7. 7.
    D’Angelo, E., Mapelli, L., Casellato, C., Garrido, J.A., Luque, N., Monaco, J., Prestori, F., Pedrocchi, A., Ros, E.: Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. Cerebellum 15(2), 1–13 (2015)Google Scholar
  8. 8.
    Yamazaki, T., Nagao, S., Lennon, W., Tanaka, S.: Modeling memory consolidation during posttraining periods in cerebellovestibular learning. Proc. Natl. Acad. Sci. U.S.A. 112, 3456–3541 (2015)CrossRefGoogle Scholar
  9. 9.
    Hirata, Y., Highstein, S.M.: Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J. Neurophysiol. 85, 2267–2288 (2001)Google Scholar
  10. 10.
    Eccles, J.C., Ito, M., Szentagothai, J.: The Cerebellum as a Neuronal Machine. Springer, Heidelberg (1967)CrossRefGoogle Scholar
  11. 11.
    Marr, D.: A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)CrossRefGoogle Scholar
  12. 12.
    Albus, J.S.: A theory of cerebellar function. Math. Biosci. 10, 25–61 (1972)CrossRefGoogle Scholar
  13. 13.
    Ito, M.: The Cerebellum and Neural Control. Raven Press, New York (1984)Google Scholar
  14. 14.
    Lisberger, S.G., Fuchs, A.F.: Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41, 764–777 (1978)Google Scholar
  15. 15.
    Ito, M.: Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989)CrossRefGoogle Scholar
  16. 16.
    Ito, M.: The Cerebellum: Brain for an Implicit Self. Financial Press, Upper Saddle River (2012)Google Scholar
  17. 17.
    Hirano, T.: Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119, 141–144 (1990)CrossRefGoogle Scholar
  18. 18.
    Sakurai, M.: Synaptic modification of parallel fibre - Purkinje cell transmission in in virto guinea-pig cerebellar slices. J. Physiol. 394, 463–480 (1987)CrossRefGoogle Scholar
  19. 19.
    Kuki, Y., Hirata, Y., Blazquez, P.M., Heiney, S.A., Highstein, S.M.: Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. NeuroReport 15(6), 1007–1011 (2004)CrossRefGoogle Scholar
  20. 20.
    Yoshikawa, A., Hirata, Y.: Different mechanisms for gain-up and gain-down vestibuloocular reflex motor learning revealed by directional differential learning tasks. Inst. Electron. Inf. Commun. Eng. J92-D(1), 176–185 (2009)Google Scholar
  21. 21.
    Hirata, Y., Lockard, J.M., Highstein, S.M.: Capacity of vertical VOR adaptation in squirrel monkey. J. Neurophysiol. 88, 3194–3207 (2002)CrossRefGoogle Scholar
  22. 22.
    Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.S., McNamara, J.O., Williams, S.M.: Neuroscience, 2nd edn. Sinauer Associates Inc., Sunderland (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Robotic Science and Technology, College of EngineeringChubu UniversityKasugaiJapan

Personalised recommendations