Advertisement

Doubting What to Eat: A Computational Model for Food Choice Using Different Valuing Perspectives

  • Altaf H. AbroEmail author
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)

Abstract

In this paper a computational model for the decision making process of food choices is presented that takes into account a number of aspects on which a decision can be based, for example, a temptation triggered by the food itself, a desire for food triggered by being hungry, valuing by the expected basic satisfaction feeling, and valuing by the expected goal satisfaction feeling.

Keywords

Computational model Food choice Hebbian learning Desire 

References

  1. 1.
    WHO: Global status report on noncommunicable diseases 2014. World Health organization (2014)Google Scholar
  2. 2.
    WHO: Obesity: preventing and managing the global epidemic. World Health Organization, Geneva (2000)Google Scholar
  3. 3.
    Stroebe, W.: Dieting, Overweight, and Obesity: Self-regulation in a Food-rich Environment. American Psychological Association, Washington, DC (2008)CrossRefGoogle Scholar
  4. 4.
    McGee, D.L.: Body mass index and mortality: a meta-analysis based on person -level data from twenty-six observational studies. Ann. Epidemiol. 15, 87–97 (2005)CrossRefGoogle Scholar
  5. 5.
    Vos, T., Barber, R.M., Bell, B., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386(9995), 743–800 (2015)CrossRefGoogle Scholar
  6. 6.
    Berridge, K.C., Ho, C.-Y., Jocelyn, M.R., Alexandra, G.D.: The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010)CrossRefGoogle Scholar
  7. 7.
    Bosse, T., Hoogendoorn, M., Memon, Z.A., Treur, J., Umair, M.: A computational model for dynamics of desiring and feeling. Cogn. Syst. Res. 19–20, 39–61 (2012)Google Scholar
  8. 8.
    Hebb, D.O.: The Organisation of Behaviour. Wiley, New York (1949)Google Scholar
  9. 9.
    Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s Postulate. Ann. Rev. Neurosci. 24(1), 139–166 (2001)CrossRefGoogle Scholar
  10. 10.
    Berridge, K.C., Terry, E.R., Aldridge, J.W.: Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9, 65–73 (2009)CrossRefGoogle Scholar
  11. 11.
    Finlayson, G., King, N., Blundell, J.E.: Liking vs. wanting food: importance for human appetite control and weight regulation. Neurosci. Biobehav. Rev. 31(7), 987–1002 (2007)CrossRefGoogle Scholar
  12. 12.
    Berner, L.A., Avena, N.M., Hoebel, B.G.: Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity 16, 1998–2002 (2008)CrossRefGoogle Scholar
  13. 13.
    Davis, C.: From passive overeating to ‘food addiction’: a spectrum of compulsion and severity. ISRN Obesity 2013, 1–20 (2013)Google Scholar
  14. 14.
    Berthoud, H.R., Lenard, N.R., Shin, A.C.: Food reward, hyperphagia, and obesity. AJP: regulatory, integrative and comparative. Physiology 300(6), R1266–R1277 (2011)Google Scholar
  15. 15.
    Elliott, R., Friston, K.J., Dolan, R.J.: Dissociable neural responses in human reward systems. J. Neurosci. 20(16), 6159–6165 (2000)Google Scholar
  16. 16.
    Barbara, J.R., Erin, L.M., Liane, S.R.: Portion size of food affects energy intake in normal-weight and overweight men and women. Am. J. Clin. Nutr. 76(6), 1207–1213 (2002)Google Scholar
  17. 17.
    Koob, G.F., Nora, D.V.: Neurocircuitry of addiction. Neuropsychopharmacology 35(1), 217–238 (2010)CrossRefGoogle Scholar
  18. 18.
    Damasio, A.R.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)Google Scholar
  19. 19.
    Damasio, A.R.: Looking for Spinoza. Vintage books, London (2004)Google Scholar
  20. 20.
    Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Pantheon books, New York (2010)Google Scholar
  21. 21.
    Damasio, A.R.: Descartes’ Error: Emotion Reason and the Human Brain. Papermac, London (1994)Google Scholar
  22. 22.
    Damasio, A.R.: The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. Roy. Soc. Lond. Ser. B, Biol. Sci. 351(1346), 1413–1420 (1996)CrossRefGoogle Scholar
  23. 23.
    Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ashby, F.G., Turner, B.O., Horvitz, J.C.: Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn. Sci. 14, 208–215 (2010)CrossRefGoogle Scholar
  25. 25.
    De Wit, S., et al.: Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behaviour toward food pictures in humans. J. Neurosci. 29, 11330–11338 (2009)CrossRefGoogle Scholar
  26. 26.
    Mowrer, O.H.: Learning Theory and the Symbolic Processes. Wiley, New York (1960)CrossRefGoogle Scholar
  27. 27.
    Watson, J.B.: Psychology as behaviourist views it. Psy. Review 20, 158–177 (1913)CrossRefGoogle Scholar
  28. 28.
    Webb, T.L., Paschal, S., Aleksandra, L.: Planning to break unwanted habits: habit strength moderates implementation intention effects on behaviour change. Br. J. Soc. Psychol. 48(3), 507–523 (2009)CrossRefGoogle Scholar
  29. 29.
    Treur, J.: Dynamic modeling based on a temporal–causal network modeling approach. Biol. Inspired Cogn. Architect. 16, 131–168 (2016)CrossRefGoogle Scholar
  30. 30.
    Damasio, A.R.: The Feeling of What Happens: Body Emotion and the Making of Consciousness. Vintage, London (2000)Google Scholar
  31. 31.
    Gerstner, W., Kistler, W.M.: Mathematical formulations of Hebbian learning. Biol. Cybern. 87, 404–415 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations