Advertisement

Neural Network Based Association Rule Mining from Uncertain Data

  • Sameen ManshaEmail author
  • Zaheer Babar
  • Faisal Kamiran
  • Asim Karim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)

Abstract

In data mining, the U-Apriori algorithm is typically used for Association Rule Mining (ARM) from uncertain data. However, it takes too much time in finding frequent itemsets from large datasets. This paper proposes a novel algorithm based on Self-Organizing Map (SOM) clustering for ARM from uncertain data. It supports the feasibility of neural network for generating frequent itemsets and association rules effectively. We take transactions in which itemsets are associated with probabilities of occurrence. Each transaction is converted to an input vector under a probabilistic framework. SOM is employed to train these input vectors and visualize the relationship between the items in a database. Distance map based on the weights of winning neurons and support count of items is used as a criteria to prune data space. As shown in our experiments, the proposed SOM is a promising alternative to typical mining algorithms for ARM from uncertain data.

Keywords

Frequent itemset mining Uncertain data Self organizing map 

References

  1. 1.
    Baez-Monroy, V., Keefe, S.O.: The identification and extraction of itemset support defined by the weight matrix of a self-organising map. In: International Joint Conference on Neural Network (IJCNN), pp. 3518–3525. IEEE (2006)Google Scholar
  2. 2.
    Baez-Monroy, V.O., O’Keefe, S.: An associative memory for association rule mining. In: International Joint Conference on Neural Network (IJCNN), pp. 2227–2232. IEEE (2007)Google Scholar
  3. 3.
    Baez-Monroy, V.O., O’Keefe, S.: Principles of employing a self-organizing map as a frequent itemset miner. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 363–370. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Bernecker, T., Kriegel, H.-P., Renz, M., Verhein, F., Zuefle, A.: Probabilistic frequent itemset mining in uncertain databases. In: International Conference on Knowledge Discovery and Data Mining, pp. 119–128. ACM (2009)Google Scholar
  5. 5.
    Changchien, S.W., Lu, T.-C.: Mining association rules procedure to support on-line recommendation by customers and products fragmentation. Expert Syst. Appl. 20, 325–335 (2001)CrossRefGoogle Scholar
  6. 6.
    Chui, C.-K., Kao, B.: A decremental approach for mining frequent itemsets from uncertain data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 64–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Chui, C.-K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 47–58. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Craven, M.W., Shavlik, J.W.: Using neural network for data mining. Future Gener. Comput. Syst. 13(2–3), 211–229 (1997). Elsevier PressCrossRefGoogle Scholar
  9. 9.
    Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. 15, 3389–3393 (2014)zbMATHGoogle Scholar
  10. 10.
    Gaber, K., Bahi, M., El-Ghazawi, T.: Parallel mining of association rules with a hopfield type neural network. In: 12th IEEE International Conference on Tools with Artificial Intelligence, p. 0090. IEEE (2000)Google Scholar
  11. 11.
    Kohonen, T. (ed.): Self-Organizing Maps. Springer-Verlag New York Inc., Secaucus (1997)zbMATHGoogle Scholar
  12. 12.
    Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1), 19–30 (1998). ElsevierCrossRefzbMATHGoogle Scholar
  13. 13.
    Leung, C.K.S., Carmichael, C.L., Hao, B.: Efficient mining of frequent patterns from uncertain data. In: 7th IEEE International Conference on Data Mining Workshops (ICDMW), pp. 489–494. IEEE (2007)Google Scholar
  14. 14.
    Soltani, A., Akbarzadeh-T, M.-R.: Confabulation-inspired association rule mining for rare and frequent itemsets. IEEE Trans. Neural Netw. Learn. Syst. 25(11), 2053–2064 (2014)CrossRefGoogle Scholar
  15. 15.
    Sun, L., Cheng, R., Cheung, D.W., Cheng, J.: Mining uncertain data with probabilistic guarantees. In: 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 273–282. ACM (2010)Google Scholar
  16. 16.
    Vettigli, G.: MiniSom: minimalistic and NumPy Based Implementation of the Self Organizing Maps. https://github.com/JustGlowing/minisom
  17. 17.
    Yang, S., Zhang, Y.: Self-organizing feature map based data mining. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 193–198. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Li, F., Yi, K.: Finding frequent items in probabilistic data. In: ACM SIGMOD International Conference on Management of Data, pp. 819–832. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sameen Mansha
    • 1
    Email author
  • Zaheer Babar
    • 1
  • Faisal Kamiran
    • 1
  • Asim Karim
    • 1
    • 2
  1. 1.Information Technology University of PunjabLahorePakistan
  2. 2.Lahore University of Management SciencesLahorePakistan

Personalised recommendations