Advertisement

Proposal of Singular-Unit Restoration by Focusing on the Spatial Continuity of Topographical Statistics in Spectral Domain

  • Kazuhide Ichikawa
  • Akira HiroseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)

Abstract

An interferogram which interferometric synthetic aperture radar (InSAR) acquires includes singular points (SPs), which cause an unwrapping error. It is very important to remove the SP. We propose a filtering technique in order to eliminate the distortion around a SP. In this proposed filter, a complex-valued neural network (CVNN) learns the continuous changes of topographical statistics in the spectral domain. CVNN predicts the spectrum around a singular unit (SU), i.e., the four pixels constituting a SP, to restore the SU. The proposed method is so effective in the removal of the distortion at the SU that it allows us to generate a highly accurate digital elevation model (DEM).

Keywords

Interferometric synthetic aperture radar Singular point Complex-valued neural network Spectral domain 

References

  1. 1.
    Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36(3), 813–821 (1998)CrossRefGoogle Scholar
  2. 2.
    Danudirdjo, D., Hirose, A.: Local subpixel coregistration of interferometric synthetic aperture radar images based on fractal models. IEEE Trans. Geosci. Remote Sens. 51(7), 4292–4301 (2013)CrossRefGoogle Scholar
  3. 3.
    Danudirdjo, D., Hirose, A.: Anisotropic phase unwrapping for synthetic aperture radar interferometry. IEEE Trans. Geosci. Remote Sens. 53(7), 4116–4126 (2015)CrossRefGoogle Scholar
  4. 4.
    Danudirdjo, D., Hirose, A.: InSAR image regularization and DEM error correction with fractal surface scattering model. IEEE Trans. Geosci. Remote Sens. 53(3), 1427–1439 (2015)CrossRefGoogle Scholar
  5. 5.
    Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988)CrossRefGoogle Scholar
  6. 6.
    Goldstein, R.M., Werner, C.L.: Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25(21), 4035–4038 (1998)CrossRefGoogle Scholar
  7. 7.
    Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lee, J.S., Papathanassiou, K., Ainsworth, T., Grunes, M., Reigber, A.: A new technique for phase noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)CrossRefGoogle Scholar
  9. 9.
    Natsuaki, R., Hirose, A.: SPEC method - a fine co-registration method for SAR interferogram. IEEE Trans. Geosci. Remote Sens. 49(1), 28–37 (2011)CrossRefGoogle Scholar
  10. 10.
    Natsuaki, R., Hirose, A.: InSAR local co-registration method assisted by shape-from-shading. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 6(2), 953–959 (2013)CrossRefGoogle Scholar
  11. 11.
    Oshiyama, G., Hirose, A.: Distortion reduction in singularity-spreading phase unwrapping with pseudo-continuous spreading and self-clustering active localization. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 8(8), 3846–3858 (2015)CrossRefGoogle Scholar
  12. 12.
    Pritt, M., Shipman, J.: Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 32(3), 706–708 (1994)CrossRefGoogle Scholar
  13. 13.
    Suksmono, A.B., Hirose, A.: Interferometric SAR image restoration using Monte-Carlo metropolis method. IEEE Trans. Sig. Process. 50(2), 290–298 (2002)CrossRefGoogle Scholar
  14. 14.
    Suksmono, A.B., Hirose, A.: Progressive transform-based phase unwrapping utilizing a recursive structure. IEICE Trans. Commun. E89–B(3), 929–936 (2006)CrossRefGoogle Scholar
  15. 15.
    Trouvé, E., Nicolas, J., Maître, H.: Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans. Geosci. Remote Sens. 36(6), 1963–1972 (1998)CrossRefGoogle Scholar
  16. 16.
    Yamaki, R., Hirose, A.: Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens. 45(10), 3240–3251 (2007)CrossRefGoogle Scholar
  17. 17.
    Yamaki, R., Hirose, A.: Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. IEEE Geosci. Remote Sens. Lett. 6(1), 18–22 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringThe University of TokyoTokyoJapan

Personalised recommendations