Classifying Human Activities with Temporal Extension of Random Forest

  • Shih Yin OoiEmail author
  • Shing Chiang Tan
  • Wooi Ping Cheah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9950)


Sensor-Based Human Activity Recognition (HAR) is a study of recognizing the human’s activities by using the data captured from wearable sensors. Avail the temporal information from the sensors, a modified version of random forest is proposed to preserve the temporal information, and harness them in classifying the human activities. The proposed algorithm is tested on 7 public HAR datasets. Promising results are reported, with an average classification accuracy of ~98 %.


Human activity Classification Random forest Temporal sequences Machine learning 


  1. 1.
    Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inf. 17(3), 579–590 (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 790–808 (2012)CrossRefGoogle Scholar
  3. 3.
    Guan, Q., Li, C., Guo, X., Wang, G.: Compressive classification of human motion using pyroelectric infrared sensors. Pattern Recogn. Lett. 49, 231–237 (2014)CrossRefGoogle Scholar
  4. 4.
    Jatobá, L.C., Großmann, U., Kunze, C., Ottenbacher, J., Stork, W.: Pattern recognition methods for classification of physical activity. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5250–5253 (2008)Google Scholar
  5. 5.
    Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)CrossRefGoogle Scholar
  6. 6.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    San-Segundo, R., Lorenzo-Trueba, J., Martínez-González, B., Pardo, J.M.: Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive Mob. Comput. 30, 84–96 (2016)CrossRefGoogle Scholar
  8. 8.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Special session in ambient assisted living: home care. J. Univ. Comput. Sci. 19(9), 1295–1314 (2013)Google Scholar
  9. 9.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 24–26 (2013)Google Scholar
  10. 10.
    Reyes-Ortiz, J.-L., Oneto, L., Samà, A., Parra, X., Anguita, D.: Transition-aware human activity recognition using smartphones. Neurocomputing 171, 754–767 (2015)CrossRefGoogle Scholar
  11. 11.
    Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRefGoogle Scholar
  12. 12.
    Wu, D., Wang, Z., Chen, Y., Zhao, H.: Neurocomputing mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing 190, 35–49 (2016)CrossRefGoogle Scholar
  13. 13.
    Chamroukhi, F., Mohammed, S., Trabelsi, D., Oukhellou, L., Amirat, Y.: Joint segmentation of multivariate time series with hidden process regression for human activity recognition. Neurocomputing 120, 633–644 (2013)CrossRefGoogle Scholar
  14. 14.
    Sanchez-Valdes, D., Alvarez-Alvarez, A., Trivino, G.: Dynamic linguistic descriptions of time series applied to self-track the physical activity. Fuzzy Sets Syst. 1, 1–20 (2015)Google Scholar
  15. 15.
    Liu, L., Peng, Y., Liu, M., Huang, Z.: Sensor-based human activity recognition system with a multilayered model using time series shapelets. Knowl. Based Syst. 90, 138–152 (2015)CrossRefGoogle Scholar
  16. 16.
    Liu, L., Peng, Y., Wang, S., Liu, M., Huang, Z.: Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors. Inf. Sci. 340–341, 1–17 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ooi, S.Y., Tan, S.C., Cheah, W.P.: Temporal Sampling Forest (TSF): an ensemble temporal learner. Soft. Comput. (2016). doi: 10.1007/s00500-016-2242-7 Google Scholar
  19. 19.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., Burlington (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Shih Yin Ooi
    • 1
    Email author
  • Shing Chiang Tan
    • 1
  • Wooi Ping Cheah
    • 1
  1. 1.Faculty of Information Science and TechnologyMultimedia UniversityMelakaMalaysia

Personalised recommendations