Skip to main content

Stacked Robust Autoencoder for Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9949))

Included in the following conference series:

Abstract

In this work we propose an l p -norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l 2 -norm to the l p -norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed l p -norm Autoencoder has been tested on benchmark deep learning datasets – MNIST, CIFAR-10 and SVHN. We have seen that the proposed robust autoencoder yields better results than the standard autoencoder (l 2 -norm) and deep belief network for all of these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Branham Jr., R.L.: Alternatives to least squares. Astron. J. 87, 928–937 (1982)

    Article  MathSciNet  Google Scholar 

  3. Shi, M., Lukas, M.A.: An L1 estimation algorithm with degeneracy and linear constraints. Comput. Stat. Data Anal. 39(1), 35–55 (2002)

    Article  MATH  Google Scholar 

  4. Wang, L., Gordon, M.D., Zhu, J.: Regularized least absolute deviations regression and an efficient algorithm for parameter tuning. In: IEEE ICDM, pp. 690–700 (2006)

    Google Scholar 

  5. Barrodale, I., Roberts, F.D.K.: An improved algorithm for discrete L1 linear approximation. SIAM J. Numer. Anal. 10(5), 839–848 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Schlossmacher, E.J.: An iterative technique for absolute deviations curve fitting. J. Am. Stat. Assoc. 68(344), 857–859 (1973)

    Article  MATH  Google Scholar 

  7. Wesolowsky, G.O.: A new descent algorithm for the least absolute value regression problem. Commun. Stat. Simul. Comput. B10(5), 479–491 (1981)

    Article  MATH  Google Scholar 

  8. Li, Y., Arce, G.R.: A maximum likelihood approach to least absolute deviation regression. EURASIP J. Appl. Sig. Process. 12, 1762–1769 (2004)

    Article  MathSciNet  Google Scholar 

  9. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  10. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2, 53–58 (1989)

    Article  Google Scholar 

  11. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen coders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Chartrand, R.: Nonconvex splitting for regularized low-rank + sparse decomposition. IEEE Trans. Sig. Process. 60, 5810–5819 (2012)

    Article  MathSciNet  Google Scholar 

  13. Majumdar, A., Ward, R.K.: On the choice of compressed sensing priors: an experimental study. Sig. Process. Image Commun. 27(9), 1035–1048 (2012)

    Article  Google Scholar 

  14. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit invariance during feature extraction. In: ICML (2011)

    Google Scholar 

  15. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  16. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Lee, H., Grosse, R., Ng, A.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshul Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mehta, J., Gupta, K., Gogna, A., Majumdar, A., Anand, S. (2016). Stacked Robust Autoencoder for Classification. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9949. Springer, Cham. https://doi.org/10.1007/978-3-319-46675-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46675-0_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46674-3

  • Online ISBN: 978-3-319-46675-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics