Advertisement

The Evolutionary Process of Image Transition in Conjunction with Box and Strip Mutation

  • Aneta NeumannEmail author
  • Bradley Alexander
  • Frank Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9949)

Abstract

Evolutionary algorithms have been used in many ways to generate digital art. We study how evolutionary processes are used for evolutionary art and present a new approach to the transition of images. Our main idea is to define evolutionary processes for digital image transition, combining different variants of mutation and evolutionary mechanisms. We introduce box and strip mutation operators which are specifically designed for image transition. Our experimental results show that the process of an evolutionary algorithm in combination with these mutation operators can be used as a valuable way to produce unique generative art.

References

  1. 1.
    Bentley, P., Corne, D.: Creative Evolutionary Systems. Evolutionary Computation Series. Morgan Kaufmann, San Francisco (2002)Google Scholar
  2. 2.
    McCormack, J., d’Inverno, M. (eds.): Computers and Creativity. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe Without Design. National Bestseller. Science. Norton, New York (1986)Google Scholar
  4. 4.
    Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)CrossRefzbMATHGoogle Scholar
  5. 5.
    Sims, K.: Artificial evolution for computer graphics. In: Thomas, J.J. (eds.) Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 319–328. ACM (1991)Google Scholar
  6. 6.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press Inc., Orlando (1994)zbMATHGoogle Scholar
  7. 7.
    Unemi, T.: Sbart4 for an automatic evolutionary art. In: Proceedings of the IEEECongress on Evolutionary Computation, CEC 2012, Brisbane, Australia, June 10-15, 2012, pp. 1–8. IEEE (2012)Google Scholar
  8. 8.
    Hart, D.: Toward greater artistic control for interactive evolution of images and animation. In: Finnegan, J.W., Pfister, H. (eds.) 33 International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2006. ACM 2(2006)Google Scholar
  9. 9.
    Champandard, A.J.: Semantic style transfer and turning two-bit doodles into fine artworks. CoRR abs/1603.01768 (2016)Google Scholar
  10. 10.
    Li, C., Wand, M.: Combining Markov random fields and convolutional neural networks for image synthesis. CoRR abs/1601.04589 (2016)Google Scholar
  11. 11.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1 + 1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jansen, T., Sudholt, D.: Analysis of an asymmetric mutation operator. Evol. Comput. 18(1), 1–26 (2010)CrossRefGoogle Scholar
  13. 13.
    Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Aneta Neumann
    • 1
    Email author
  • Bradley Alexander
    • 1
  • Frank Neumann
    • 1
  1. 1.Optimisation and Logistics, School of Computer ScienceThe University of AdelaideAdelaideAustralia

Personalised recommendations