Parcellating Whole Brain for Individuals by Simple Linear Iterative Clustering

  • Jing Wang
  • Zilan Hu
  • Haixian WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9949)


This paper utilizes a supervoxel method called simple linear iterative clustering (SLIC) to parcellate whole brain into functional subunits using resting-state fMRI data. The parcellation algorithm is directly applied on the resting-state fMRI time series without feature extraction, and the parcellation is conducted on the individual subject level. In order to obtain parcellations with multiple granularities, we vary the cluster number in a wide range. To demonstrate the reasonability of the proposed approach, we compare it with a state-of-the-art whole brain parcellation approach, i.e., the normalized cuts (Ncut) approach. The experimental results show that the proposed approach achieves satisfying performances in terms of spatial contiguity, functional homogeneity and reproducibility. The proposed approach could be used to generate individualized brain atlases for applications such as personalized medicine.


Whole brain parcellation Supervoxel Resting-state fMRI Functional connectivity Individualized brain atlas 



This work was supported in part by the National Basic Research Program of China under Grant 2015CB351704, the National Natural Science Foundation of China under Grant 61375118, and the Research Foundation for Young Teachers in Anhui University of Technology under Grant QZ201516.


  1. 1.
    Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)CrossRefGoogle Scholar
  2. 2.
    Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)CrossRefGoogle Scholar
  3. 3.
    Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E.J., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013)CrossRefGoogle Scholar
  4. 4.
    Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012)CrossRefGoogle Scholar
  5. 5.
    Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage 82, 403–415 (2013)CrossRefGoogle Scholar
  6. 6.
    van den Heuvel, M., Mandl, R., Pol, H.H.: Normalized cut group clustering of resting-state fMRI data. PLoS ONE 3, e2001 (2008)CrossRefGoogle Scholar
  7. 7.
    Moreno-Dominguez, D., Anwander, A., Knosche, T.R.: A hierarchical method for whole-brain connectivity-based parcellation. Hum. Brain Mapp. 35, 5000–5025 (2014)CrossRefGoogle Scholar
  8. 8.
    Shi, J.B., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. 22, 888–905 (2000)CrossRefGoogle Scholar
  9. 9.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. 34, 2274–2282 (2012)CrossRefGoogle Scholar
  11. 11.
    Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imaging 31, 474–486 (2012)CrossRefGoogle Scholar
  12. 12.
    Biswal, B.B., Mennes, M., Zuo, X.N., et al.: Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734–4739 (2010)CrossRefGoogle Scholar
  13. 13.
    Yan, C.G., Zang, Y.F.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 1–7 (2010)Google Scholar
  14. 14.
    Yu, S.X., Shi, J.B.: Multiclass spectral clustering. In: Proceedings of IEEE International Conference on Computer Vision, pp. 313–319 (2003)Google Scholar
  15. 15.
    Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E.: Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26(1), 288–303 (2016)CrossRefGoogle Scholar
  16. 16.
    Wang, D.H., Buckner, R.L., Fox, M.D., et al.: Parcellating cortical functional networks in individuals. Nat. Neurosci. 18, 1853–1860 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning ScienceSoutheast UniversityNanjingChina
  2. 2.School of Mathematics and PhysicsAnhui University of TechnologyMaanshanChina

Personalised recommendations