Skip to main content

Evolutionary Multi-task Learning for Modular Training of Feedforward Neural Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

Abstract

Multi-task learning enables learning algorithms to harness shared knowledge from several tasks in order to provide better performance. In the past, neuro-evolution has shownpromising performance for a number of real-world applications. Recently, evolutionary multi-tasking has been proposed for optimisation problems. In this paper, we present a multi-task learning for neural networks that evolves modular network topologies. In the proposed method, each task is defined by a specific network topology defined with a different number of hidden neurons. The method produces a modular network that could be effective even if some of the neurons and connections are removed from selected trained modules in the network. We demonstrate the effectiveness of the method using feedforward networks to learn selected n-bit parity problems of varying levels of difficulty. The results show better training and generalisation performance when the modules for representing additional knowledge are added by increasing hidden neurons during training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeline, P., Saunders, G., Pollack, J.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  2. Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and adaptive coevolution. Evol. Comput. 5(4), 373–399 (1997)

    Article  Google Scholar 

  3. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  4. Sexton, R.S., Dorsey, R.E.: Reliable classification using neural networks: a genetic algorithm and backpropagation comparison. Decis. Support Syst. 30(1), 11–22 (2000)

    Article  Google Scholar 

  5. Cant-Paz, E., Kamath, C.: An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems. IEEE Trans. Syst. Man Cybern. B Cybern. 35(5), 915–933 (2005)

    Article  Google Scholar 

  6. Garcia-Pedrajas, N., Hervas-Martinez, C., Munoz-Perez, J.: COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans. Neural Netw. 14(3), 575–596 (2003)

    Article  Google Scholar 

  7. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution through cooperatively coevolved synapses. J. Mach. Learn. Res. 9, 937–965 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 26, 3123–3136 (2015)

    Article  MathSciNet  Google Scholar 

  9. Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforcement learning. J. Algorithms 64(4), 152–168 (2009). Reinforcement Learning

    Article  MATH  Google Scholar 

  10. Happel, B.L., Murre, J.M.: Design and evolution of modular neural network architectures. Neural Networks 7(6–7), 985–1004 (1994). Models of Neurodynamics and Behavior

    Article  Google Scholar 

  11. Clune, J., Mouret, J.-B., Lipson, H.: The evolutionary origins of modularity. Proc. R. Soc. of London B: Biol. Sci. 280(1755) (2013)

    Google Scholar 

  12. Ellefsen, K.O., Mouret, J.-B., Clune, J.: Neural modularity helps organismsevolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11(4), 1–24 (2015)

    Article  Google Scholar 

  13. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(13), 239–255 (2010). Artificial Brains

    Article  Google Scholar 

  14. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  15. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

    Article  Google Scholar 

  16. Gupta, A., Ong, Y.-S., Feng, L., Tan, K.C.: Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Trans, Cybernetics (2016, Accepted)

    Google Scholar 

  17. Ong, Y.-S., Gupta, A.: Evolutionary multitasking: a computer science view of cognitive multitasking. Cognitive Comput., 1–18 (2016)

    Google Scholar 

  18. Chen, X., Ong, Y.-S., Lim, M.-H., Tan, K.C.: A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 15(5), 591–607 (2011)

    Article  Google Scholar 

  19. Liu, D., Hohil, M.E., Smith, S.H.: N-bit parity neural networks: new solutions based on linear programming. Neurocomputing 48(14), 477–488 (2002)

    Article  MATH  Google Scholar 

  20. Mangal, M., Singh, M.P.: Analysis of pattern classification for the multidimensional parity-bit-checking problem with hybrid evolutionary feed-forward neural network. Neurocomputing 70(79), 1511–1524 (2007). Advances in Computational Intelligence and Learning, 14th European Symposium on Artificial Neural Networks 2006

    Article  Google Scholar 

  21. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Chandra, R., Frean, M.R., Zhang, M.: Crossover-based local search in cooperative co-evolutionary feedforward neural networks. Appl. Soft Comput. 12(9), 2924–2932 (2012)

    Article  Google Scholar 

  23. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Deb, K., Deb, D.: Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 4(1), 1–28 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohitash Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chandra, R., Gupta, A., Ong, YS., Goh, CK. (2016). Evolutionary Multi-task Learning for Modular Training of Feedforward Neural Networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics