Skip to main content

Novel Non-invasive Brain Stimulation Techniques to Modify Brain Networks After Stroke

  • Conference paper
  • First Online:
Converging Clinical and Engineering Research on Neurorehabilitation II

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 15))

  • 173 Accesses

Abstract

Improving motor function after stroke is an in an important area of research in neurorehabilitation. Clinical trials using non-invasive brain stimulation (NIBS) to improve rehabilitation outcome after stroke showed modest effect sizes or even lack of efficacy [13]. One important reason for this limited therapeutic success may be too simplistic “one hat fits it all” strategies, e.g. aiming at increasing excitability in the ipsilesional primary motor cortex [4] that disregard high interindividual variability in responses to NIBS protocols, even in healthy subjects [5]. Several strategies that have been recently developed to improve therapeutic effect size of NIBS during stroke neurorehabilitation will be detailed in this presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Butler, M. Shuster, E. O’Hara, K. Hurley, D. Middlebrooks, K. Guilkey, A meta-analysis of the efficacy of anodal transcranial direct current stimulation for upper limb motor recovery in stroke survivors. J. Hand Ther.: Official J. Am. Soc. Hand Therapists 26, 162–170 (2013). quiz 71

    Article  Google Scholar 

  2. W.Y. Hsu, C.H. Cheng, K.K. Liao, I.H. Lee, Y.Y. Lin, Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis. Stroke; J. Cereb. Circ. 43, 1849–1857 (2012)

    Article  Google Scholar 

  3. J.P. Lefaucheur, N. Andre-Obadia, A. Antal et al., Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014)

    Article  Google Scholar 

  4. N.S. Ward, L.G. Cohen, Mechanisms underlying recovery of motor function after stroke. Arch. Neurol. 61, 1844–1848 (2004)

    Article  Google Scholar 

  5. M. Hamada, N. Murase, A. Hasan, M. Balaratnam, J.C. Rothwell, the role of interneuron networks in driving human motor cortical plasticity. Cereb. Cortex 23, 1593–1605 (2013)

    Article  Google Scholar 

  6. T. Wagner, F. Fregni, U. Eden et al., Transcranial magnetic stimulation and stroke: a computer-based human model study. NeuroImage. 30, 857–870 (2006)

    Article  Google Scholar 

  7. S. Bashir, D. Edwards, A. Pascual-Leone, Neuronavigation increases the physiologic and behavioral effects of low-frequency rTMS of primary motor cortex in healthy subjects. Brain Topogr. 24, 54–64 (2011)

    Article  Google Scholar 

  8. P. Celnik, N.J. Paik, Y. Vandermeeren, M. Dimyan, L.G. Cohen, Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke J. Cereb. Circ. 40, 1764–1771 (2009)

    Article  Google Scholar 

  9. C. Grefkes, D.A. Nowak, S.B. Eickhoff et al., Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurology. 63, 236–246 (2008)

    Article  Google Scholar 

  10. C. Grefkes, D.A. Nowak, L.E. Wang, M. Dafotakis, S.B. Eickhoff, G.R. Fink, Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modelling. NeuroImage 50, 234–243 (2010)

    Article  Google Scholar 

  11. A. Flöel, F. Hummel, C. Breitenstein, S. Knecht, L.G. Cohen, Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology 65, 472–474 (2005)

    Article  Google Scholar 

  12. P. Jung, U. Ziemann, Homeostatic and non-homeostatic modulation of learning in human motor cortex. J. Neurosci. 29, 5597–5604 (2009)

    Article  Google Scholar 

  13. A. Avenanti, M. Coccia, E. Ladavas, L. Provinciali, M.G. Ceravolo, Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 78, 256–264 (2012)

    Article  Google Scholar 

  14. A. Gharabaghi, D. Kraus, M.T. Leao et al., Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front. Hum. Neurosci. 8, 122 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Ziemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ziemann, U. (2017). Novel Non-invasive Brain Stimulation Techniques to Modify Brain Networks After Stroke. In: Ibáñez, J., González-Vargas, J., Azorín, J., Akay, M., Pons, J. (eds) Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-46669-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46669-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46668-2

  • Online ISBN: 978-3-319-46669-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics