Skip to main content

The Lepidosaurian Ear: Variations on a Theme

  • Chapter
  • First Online:
Evolution of the Vertebrate Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 59))

Abstract

Today, Lepidosauria encompasses more than 9,000 species of lizards, snakes, and amphisbaenians (Squamata), as well as the New Zealand Tuatara, Sphenodon (Rhynchocephalia). In many lizards, an efficient tympanic middle ear and an effective inner-ear compensatory mechanism permit acute hearing across a range of frequencies. Sphenodon lacks a tympanic membrane, but this is the result of secondary loss. Fossils of stem lepidosaurs and early rhynchocephalians indicate that the ancestral lepidosaurian middle ear was tympanic, although the compensatory mechanism was probably rudimentary. Derived rhynchocephalians like Sphenodon lost the tympanic ear, possibly in association with feeding specializations, whereas squamates improved it by developing a more efficient compensatory window. However, the timing of this change is uncertain as the earliest lizard fossils are uninformative in this respect. Lizards from the Early Cretaceous onward show the derived condition. Squamates are morphologically and ecologically diverse, and some specialized lifestyles have affected ear anatomy. Among extant squamates, the only obligate marine swimmers are sea snakes, but in the Cretaceous, mosasaurs dominated the marine niche. These aquatic lizards show a middle ear morphology analogous to that of extant marine turtles (bulla-like quadrate, expanded extrastapes, loss of the tympanum?). Loss of the tympanum also occurs in squamate burrowers but in conjunction with the possession of a robust stapes with an enlarged footplate and, frequently, reduction or modification of the compensatory mechanism. Ears of this type are found in the enigmatic Cretaceous Sineoamphisbaena and in amphisbaenians from the Eocene to the present day. Where known, the ears of early snakes more closely resemble those of burrowers than swimmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aam:

anterior ampulla

aLRST:

apertura lateralis recessus scalae tympani

aMRST:

apertura medialis recessus scalae tympani

ar:

acoustic recess (entry of CN VIII, nerve foramina)

art.s:

articular surface

asc:

anterior semicircular canal

as.ip:

articular region of internal process

Bo:

basioccipital

CCF:

crista circumfenestralis

Cd:

cochlear duct

cEs:

contact surface on stapedial shaft for extrastapes

cif:

crista interfenestralis

CN 8:

vestibulo-acoustic cranial nerve (VIII)

CN 9:

glossopharyngeal cranial nerve (IX)

CN 10:

vagus cranial nerve (X)

cp:

crista prootica

ctb:

crista tuberalis

Cw:

compensatory window

Ed:

endolymphatic duct

En:

endolymphatic sac

Eo:

exoccipital

Es:

extrastapes

f5:

foramen for CN V

f8:

foramen for CN VIII

f9:

foramen for glossopharyngeal nerve CN IX

f En:

foramen for endolymphatic duct

FP:

footplate of stapes

fV:

fenestra vestibuli

ham:

horizontal ampulla

hsc:

horizontal semicircular canal

ip:

internal process

isp:

infrastapedial process

Jr:

jugular recess

JSF:

juxtastapedial fossa

la:

lagena

Mf:

Metotic fissure

Mx:

maxilla

occ:

osseus common crus

O.cp:

otic capsule

orb:

orbit

pam:

posterior ampulla

Pc:

periotic cistern

Pd:

periotic duct

Pf:

periotic foramen

Ppr:

paroccipital process of opisthotic

Pro:

prootic

Ps:

periotic sac

psc:

posterior semicircular canal

pt.ip:

pit for process internus

Qu:

quadrate

Qu.co:

quadrate conch

Qu.tc:

quadrate tympanic crest

Ra:

retroarticular process of jaw

rm:

rim around stapedial footplate

RST:

recessus scalae tympani

So:

supraoccipital

Sp:

sphenoid

ssp:

suprastapedial process

St:

stapes

Stm:

meatus for stapes

Sts:

stapedial shaft

stt:

statolith (=otolith)

Tm:

tympanic membrane

Va:

vestibular apparatus

Vc:

vestibular chamber

vf:

vagus foramen

References

  • Apesteguia, S., & Novas, F. E. (2003). Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana. Nature, 425, 609–612.

    Article  CAS  PubMed  Google Scholar 

  • Apesteguía S., & Zaher, H. (2006). A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440, 1037–1040.

    Article  PubMed  CAS  Google Scholar 

  • Apesteguia, S., Gomez, R. O., & Rougier, G. W. (2014). The youngest South American rhynchocephalian, a survivor of the K/Pg extinction. Proceedings of the Royal Society of London B: Biological Sciences, 281, doi:10.1098/rspb.2014.0811.

    Google Scholar 

  • Baird, I. L. (1970). The anatomy of the reptilian ear. In C. Gans & T. S. Parsons (Eds.), Biology of the Reptilia, vol. 2. Morphology B (pp. 193–275). New York: Academic Press.

    Google Scholar 

  • Bell, G. L. (1997). A phylogenetic revision of North American and Adriatic Mosasauroidea. In J. M. Callaway & E. L. Nicholls (Eds.), Ancient marine reptiles (pp. 293–332). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Berman, D. S. (1973). Spathorhynchus fossorium, a Middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia, 1973(4), 704–721.

    Article  Google Scholar 

  • Berman, D. S. (1976). A new amphisbaenian (Reptilia: Amphisbaenia) from the Oligocene-Miocene John Day Formation, Oregon. Journal of Paleontology, 50, 165–174.

    Google Scholar 

  • Berman, D. S., & Regal, P. J. (1967). The loss of the ophidian middle ear. Evolution, 21, 641–643.

    Article  Google Scholar 

  • Boistel, R., Herrel, A., Lebrun, R., Daghfous, G., et al. (2011). Shake rattle and roll: The bony labyrinth and aerial descent in squamates. Integrative and Comparative Biology, 51, 957–968.

    Article  PubMed  Google Scholar 

  • Borsuk-BiaÅ‚ynicka, M. (1984). Anguimorphans and related lizards from the Late Cretaceous of the Gobi Desert, Mongolia. Palaeontologica Polonica, 46, 5–105.

    Google Scholar 

  • Borsuk-BiaÅ‚ynicka, M. (1988). Globaura venusta gen.et. sp. n. and Eoxanta lacertifrons gen et sp. n., non-teiid lacertoids from the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica, 33, 211–248.

    Google Scholar 

  • Borsuk-BiaÅ‚ynicka, M. (1990). Gobekko cretacicus gen.et. sp. n., a new gekkonid lizard from the Cretaceous of the Gobi Desert. Acta Palaeontologica Polonica, 35, 67–76.

    Google Scholar 

  • Borsuk-BiaÅ‚ynicka, M. & Moody, S. M. (1984). Priscagaminae, a new subfamily of the Agamidae (Sauria) from the Late Cretaceous of the Gobi Desert. Acta Palaeontologica Polonica, 29, 51–81.

    Google Scholar 

  • Borsuk-BiaÅ‚ynicka, M., Lubka, M., & Bohme, W. (1999). A lizard from the Baltic amber (Eocene) and the ancestry of crown-group lacertids. Acta Palaeontologica Polonica, 44, 349–382.

    Google Scholar 

  • Broschinski, A. (2001). The lizards from the Guimarota mine. In T. Martin & B. Krebs (Eds.), Guimarota: A Jurassic ecosystem (pp. 59–68). Munich: Dr Friedrich Pfeil.

    Google Scholar 

  • Caldwell, M. W. (2001). On the aquatic squamate Dolichosaurus longicollis Owen, 1850 (Cenomanian, Upper Cretaceous), and the evolution of elongate necks in squamates. Journal of Vertebrate Paleontology, 20, 720–735.

    Article  Google Scholar 

  • Caldwell, M. W. (2006). A new species of Pontosaurus (Squamata, Pythonomorpha) from the Upper Cretaceous of Lebanon and a phylogenetic analysis of Pythonomorpha. Memorie della Societa Italiana di Scienze Natrali e del Museo Civico di Storia Naturale di Milano, 34(3), 1–42.

    Google Scholar 

  • Caldwell, M. W., & Lee, M. S. Y. (1997). A snake with legs from the marine Cretaceous of the Middle East. Nature, 386, 705–709.

    Article  CAS  Google Scholar 

  • Caldwell, M. W., & Dal Sasso, C. (2004). Soft-tissue preservation in a 95 million year old marine lizard: Form, function, and aquatic adaptation. Journal of Vertebrate Paleontology, 24(4), 980–985.

    Article  Google Scholar 

  • Caldwell, M. W., & Palci, A. (2007). A new basal mosasauroid from the Cenomanian (U. Cretaceous) of Slovenia with a review of mosasauroid phylogeny and evolution. Journal of Vertebrate Paleontology, 27, 863–880.

    Article  Google Scholar 

  • Caldwell, M. W., & Calvo, J. (2008). Details of a new skull and articulated cervical column of Dinilysia patagonica Woodward 1901. Journal of Vertebrate Paleontology, 28, 349–362.

    Article  Google Scholar 

  • Callison, G. (1967). Intracranial mobility in Kansas mosasaurs. The University of Kansas Paleontological Contributions, 1967, Paper 26.

    Google Scholar 

  • Camp, C. L. (1923). Classification of lizards. Bulletin of the American Museum of Natural History, 48, 289–481.

    Google Scholar 

  • Camp, C. L. (1942). California mosasaurs. University of California, Memoirs, 13, 1–68.

    Google Scholar 

  • Carroll, R. L. (1985). A pleurosaur from the Lower Jurassic and the taxonomic position of the Sphenodontida. Palaeontographica A, 189, 1–28.

    Google Scholar 

  • Carroll, R. L., & DeBraga, M. (1992). Aigialosaurs: Mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12, 66–86.

    Article  Google Scholar 

  • Carroll, R. L., & Wild, R. (1994). Marine members of the Sphenodontia. In N. C. Fraser & H.-D. Sues (Eds.). In the shadow of the dinosaurs: Early Mesozoic tetrapods (pp. 70–83). Cambridge: Cambridge University Press.

    Google Scholar 

  • Charig, A. J., & Gans, C. (1990). Two new amphisbaenians from the Lower Miocene of Kenya. Bulletin of the British Museum of Natural History (Geology), 46, 19–36.

    Google Scholar 

  • Christensen-Dalsgaard, J., Brandt, C., Willis, K. L., Bech Christensen, C., et al. (2012). Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proceedings of the Royal Society of London B: Biological Sciences, 279, 2816–2824.

    Article  Google Scholar 

  • Clark, J. T., & Hernandez, R. (1994). A new burrowing diapsid from the Jurassic La Boca Formation of Tamaulipas, Mexico. Journal of Vertebrate Paleontology, 14, 180–195.

    Article  Google Scholar 

  • Conrad, J. (2008). Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310, 1–182.

    Article  Google Scholar 

  • Conrad, J. L., & Daza, J. D. (2015). Naming and rediagnosing the Cretaceous gekkonomorph (Reptilia, Squamata) from Öösh (Övörkhangai, Mongolia). Journal of Vertebrate Paleontology, 35:5, e980891. doi:10.1080/02724634.2015.980891

    Article  Google Scholar 

  • Conrad, J. L., & Norell, M. A. (2006). High-resolution X-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övörkhangai; Mongolia). Historical Biology: An International Journal of Paleobiology, 18(4), 405–431.

    Article  Google Scholar 

  • Conrad, J. L., & Norell M. A. (2008). The braincases of two glyptosaurines (Anguidae, Squamata) and anguid phylogeny. American Museum Novitates, 3613, 1–24.

    Article  Google Scholar 

  • Conrad, J. L., Rieppel, O., Gauthier, J. A., & Norell, M. A. (2011). Osteology of Gobiderma pulchrum (Monstersauria, Lepidosauria, Reptilia). Bulletin of the American Museum of Natural History, 362, 1–88.

    Article  Google Scholar 

  • Cope, E. D. (1869). On the reptilian orders Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History, 12, 250–266.

    Google Scholar 

  • Cuthbertson, R., Maddin, H. C., Holmes, R., & Anderson, J. S. (2015). The braincase and osseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behaviour. The Anatomical Record, 298, 1597–1611.

    Article  PubMed  Google Scholar 

  • Daza, J. D., Bauer, A. M., & Snively, E. (2013). Gobekko cretacicus (Reptilia: Squamata) and its bearing on the interpretation of gekkotan affinities. Zoological Journal of the Linnean Society, 167, 430–448.

    Article  Google Scholar 

  • Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M., & Grimaldi, D. A. (2016). Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Science Advances, 2(3), e1501080.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutchak, A. R., & Caldwell, M. W. (2006). Redescription of Aigialosaurus dalmaticus Kramberger, 1892, a Cenomanian mosasauroid lizard from Hvar Island, Croatia. Canadian Journal of Earth Sciences, 43, 1821–1834.

    Article  Google Scholar 

  • Estes, R., Frazzetta, T. H., & Williams, E. E. (1970). Studies on the fossil snake Dinilysia patagonica Woodward. Part 1. Cranial morphology. Bulletin of the Museum of Comparative Zoology, 140, 25–74.

    Google Scholar 

  • Estes, R., de Queiroz, K., & Gauthier, J. (1988). Phylogenetic relationships within Squamata. In R. Estes & G. Pregill (Eds.), Phylogenetic relationships of the lizard families—essays commemorating Charles L. Camp (pp. 119–281). Stanford: Stanford University Press.

    Google Scholar 

  • Evans, S. E. (1980). The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zoological Journal of the Linnean Society, 70, 203–264.

    Article  Google Scholar 

  • Evans, S. E. (1991). A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England. Zoological Journal of the Linnean Society, 103, 391–412.

    Article  Google Scholar 

  • Evans, S. E. (1994). A new anguimorph lizard from the Jurassic and Lower Cretaceous of England. Palaeontology, 37, 33–49.

    Google Scholar 

  • Evans, S. E. (1998). Crown-group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles. Palaeontographica A, 250, 123–154.

    Google Scholar 

  • Evans, S. E. (2009). An early kuehneosaurid reptile (Reptilia: Diapsida) from the Early Triassic of Poland. Palaeontologica Polonica, 65, 145–178.

    Google Scholar 

  • Evans, S. E., & Borsuk-BiaÅ‚ynicka, M. M. (2009). A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologica Polonica, 65, 179–202.

    Google Scholar 

  • Evans, S. E., & Jones, M. E. H. (2010). The origins, early history and diversification of lepidosauromorph reptiles. In S. Bandyopadhyay (Ed.), New aspects of Mesozoic biodiversity. Lecture notes in earth sciences 132 (pp. 27–44). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Evans, S. E., & Wang, Y. (2010). A new lizard (Reptilia: Squamata) with exquisite preservation of soft tissue from the Lower Cretaceous of Inner Mongolia, China. Journal of Systematic Palaeontology, 8(1), 81–95.

    Article  Google Scholar 

  • Evans, S. E., Raia, P., & Barbera, C. (2004). New lizards and rhynchocephalians from the Early Cretaceous of southern Italy. Acta Palaeontologica Polonica, 49(3), 393–408.

    Google Scholar 

  • Fernandez, M. S., & Talevi, M. (2015). An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear. Comptes Rendus Palevol, 14, 483–493.

    Article  Google Scholar 

  • Fernandez, V., Buffetaut, E., Suteethorn, V., Rage, J.-C., Tafforeau, P., & Kundrat, M. (2015). Evidence of egg diversity in squamate evolution from Cretaceous anguimorph embryos. PLoS ONE, doi:10.1371/journal.pone.028610.

    Google Scholar 

  • Folie, A, Smith, R., & Smith, T. (2013). New amphisbaenian lizards from the Early Paleogene of Europe and their implications for the early evolution of modern amphisbaenians. Geologica Belgica, 16(4), 227–235.

    Google Scholar 

  • Fraser, N. C. (1982). A new rhynchocephalian from the British Upper Trias. Palaeontology, 25, 709–725.

    Google Scholar 

  • Fraser, N. C. (1988). The osteology and relationships of Clevosaurus (Reptilia: Sphenodontida). Philosophical Transactions of the Royal Society of London B: Biological Sciences, 321, 125–178.

    Article  Google Scholar 

  • Friedel, P., Young, B. A., & van Hemmen, J. L. (2008). Auditory localization of ground-borne vibrations in snakes. Physical Review Letters, 100. doi:10.1103/PhysRevLett.100.048701.

  • Gans, C. (1978). The characteristics and affinities of the Amphisbaenia. Transactions of the Zoological Society of London, 34, 347–416.

    Article  Google Scholar 

  • Gans, C., & Wever, E. G. (1972). The ear and hearing in Amphisbaena (Reptilia). Journal of Experimental Biology, 179, 17–34.

    Google Scholar 

  • Gans, C., & Wever, E. (1976). The ear and hearing in Sphenodon punctatus. Proceedings of the National Academy of Sciences of London B: Biological Sciences, 73, 4244–4246.

    Article  CAS  Google Scholar 

  • Gauthier, J., Kearney, M., Maisano, J. A., Rieppel, O., & Behlke, A. D. B. (2012). Assembling the squamate Tree of Life: Perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53(1), 3–308.

    Article  Google Scholar 

  • Georgi, J. A., & Sipla, J. S. (2008). Comparative and functional anatomy of balance in aquatic reptiles and birds. In J. G. M. Thewissen & S. Nummela (Eds.), Sensory evolution on the threshold: Adaptations in secondarily aquatic vertebrates (pp. 233–256). Berkeley: University of California Press.

    Google Scholar 

  • Hetherington, T. (2008). Comparative anatomy and function of hearing in aquatic amphibians, reptiles and birds. In J. G. M. Thewissen & S. Nummela (Eds.), Sensory evolution on the threshold: Adaptations in secondarily aquatic vertebrates (pp. 183–224). Berkeley: University of California Press.

    Google Scholar 

  • Hsiang, A. Y., Field, D. J., Webster, T. H., Behlke, A. D. B., et al. (2015). The origin of snakes: Revealing the ecology, behaviour and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Biology, 15(87), 1–22.

    Google Scholar 

  • Hoffstetter, R. (1967). Coup d’oeil sur les Sauriens (= lacertliens) des couches de Purbeck (Jurassic supérieur d’Angleterre. Résumé d’un Memoire). Colloques Internationaux du Centre National de la recherche Scientifique, 163, 349–371.

    Google Scholar 

  • Houssaye, A., Lindgren, J., Pellegrini, R., Lee, A. H., et al. (2013) Microanatomical and histological features in the long bones of mosasaurine mosasaurs (Reptilia, Squamata) – implications for aquatic adaptation and growth rates. PLoS ONE 8(10), doi:10.1371/journal.pone.0076741.

    Google Scholar 

  • Jiang, D-Y., Motani, R., Tintori, A., Rieppel, O., et al. (2014). The Early Triassic eosauropterygian Majiashanosaurus discocoracoidis, gen. et sp. nov. (Reptilia, Sauropterygia) from Chaohu, Anhui Province, People’s Republic of China. Journal of Vertebrate Paleontology, 34, 1044–1052.

    Article  Google Scholar 

  • Jones, M. E. H. (2006). The Early Cretaceous clevosaurs from China (Diapsida: Lepidosauria). New Mexico Museum of Natural History and Science Bulletin, 37, 548–561.

    Google Scholar 

  • Jones, M. E. H. (2008). Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). Journal of Morphology, 269, 945–966.

    Article  PubMed  Google Scholar 

  • Jones, M. E. H., & Cree, A. (2012). Tuatara: Quick guide. Current Biology, 22(23), 986–987.

    Article  CAS  Google Scholar 

  • Jones, M. E. H., Anderson, C. L., Hipsley, C. A., Müller, J., et al. (2013) Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, Phylogenetics and Phylogeography, doi:10.1186/1471-2148-13-208.

    Google Scholar 

  • Jones, M. E. H., O’Higgins, P., Fagan, M. J., Evans, S. E., & Curtis, N. (2012). Shearing mechanics and the influence of a flexible symphysis during oral food processing in Sphenodon (Lepidosauria: Rhynchocephalia). The Anatomical Record, 295, 1075–1091.

    Article  PubMed  Google Scholar 

  • Jones, M. E. H., Tennyson, A. J. D., Evans, S. E., & Worthy, T. H. (2009). A sphenodontine (Rhynchocephalia) from the Miocene of New Zealand and palaeobiogeography of the tuatara (Sphenodon). Proceedings of the Royal Society of London B: Biological Sciences, 276, 1385–1390.

    Article  Google Scholar 

  • Kearney, M., Maisano, J. A., & Rowe, T. (2005). Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution computed tomography. Journal of Morphology, 264, 1–33.

    Article  PubMed  Google Scholar 

  • Konishi, T., & Caldwell, M. W. (2009). New material of the mosasaur Plioplatecarpus nichollsae Cuthbertson et al., 2007, clarifies problematic features of the holotype specimen. Journal of Vertebrate Paleontology, 29, 417–436.

    Article  Google Scholar 

  • Lee, M. S. Y. (1997). The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 53–91.

    Article  PubMed Central  Google Scholar 

  • Lee, M. S. Y., & Caldwell, M. W. (1998). Anatomy and relationships of Pachyrhachis problematicus, a primitive snake with limbs. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 1521–1552.

    Article  PubMed Central  Google Scholar 

  • Lindgren, J., Jagt, J. W. M., & Caldwell, M. W. (2007). A fishy mosasaur: The axial skeleton of Plotosaurus (Reptilia, Squamata) reassessed. Lethaia, 40, 153–160.

    Article  Google Scholar 

  • Lindgren, J., Polcyn, M. J., & Young, B. A. (2011) Landlubbers to leviathans: Evolution of swimming in mosasaurine mosasaurs. Paleobiology, 37(3), 445–469.

    Article  Google Scholar 

  • Lombard, R. E., & Hetherington, T. E. (1993). Structural basis of hearing and sound transmission. In J. Hanken & B. K. Hall (Eds.), The skull, vol. 3 (pp. 241–302). Chicago: Chicago University Press.

    Google Scholar 

  • Longrich, N. A., Bhullar, B. A., & Gauthier, J. A. (2012). A transitional snake from the Late Cretaceous period of North America. Nature, 488, 205–208.

    Article  CAS  PubMed  Google Scholar 

  • Longrich, N. A., Vinther, J., Pyron, R. A., Pisani, D., & Gauthier, J. A. (2015). Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proceedings of the Royal Society of London B: Biological Sciences, 282, doi:10.1098/rspb.2014.3034.

    Google Scholar 

  • McDowell, S. B. (1967). The extracolumella and tympanic cavity of the ‘Earless’ Monitor lizard, Lanthanotus borneensis. Copeia, 1967(1), 154–159.

    Article  Google Scholar 

  • McDowell, S. B. (2008). The skull of Serpentes. In C. Gans, A. S. Gaunt, & K. Adler (Eds.), Biology of the reptilia, vol. 21. Morphology I. The skull and appendicular locomotor apparatus of Lepidosauria (pp. 467–620). Ithaca (NY): Society for the Study of Amphibians and Reptiles, Contributions to Herpetology, 24.

    Google Scholar 

  • Manley, G. A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proceedings of the National Academy of Sciences of the USA, 97, 11736–11743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, O. C. (1880). New characters of mosasauroid reptiles. American Journal of Science, 109, 83–87.

    Article  Google Scholar 

  • Martill, D. M., Tischlinger, H., & Longrich, N. R. (2015). A four-legged snake from the Early Cretaceous of Gondwana. Science, 349, 416–419.

    Article  CAS  PubMed  Google Scholar 

  • Motani, R., Jiang, D-Y., Chen G-B., Tintori, A., et al.(2015). A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature, 517, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Müller, J., Hipsley, C. A., Head, J.J., Kardjilov, N., et al. (2011). Eocene lizard from Germany reveals amphisbaenian origins. Nature, 473, 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Norell, M. A., & Gao, K. (1997). Braincase and phylogenetic relationships of Estesia mongoliensis from the Late Cretaceous of the Gobi Desert and the recognition of a new clade of lizards. American Museum Novitates, 3211, 1–25.

    Google Scholar 

  • Oelrich, T. M. (1956). The anatomy of the head of Ctenosaura pectinata (Iguanidae). University of Michigan Museum of Zoology, Miscellaneous Publications, 94, 1–122.

    Google Scholar 

  • Palci, A., & Caldwell, M. W. (2014). The Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and the crista circumfenestralis of snakes. Journal of Morphology, 275, 1187–1200.

    Article  PubMed  Google Scholar 

  • Palci, A., Caldwell M. W., & Albino, A. M. (2013a). Emended diagnosis and phylogenetic relationships of the Upper Cretaceous fossil snake Najash rionegrina Apesteguia and Zaher, 2006. Journal of Vertebrate Paleontology, 33, 131–140.

    Article  Google Scholar 

  • Palci, A., Caldwell, M. W., & Nydam, R. L. (2013b) Reevaluation of the anatomy of the Cenomanian (Upper Cretaceous) hind-limbed marine fossil snakes Pachyrhachis, Haasiophis, and Eupodophis. Journal of Vertebrate Paleontology, 33(6), 1328–1342.

    Article  Google Scholar 

  • Pierce, S. E., & Caldwell, M. W. (2004). Redescription and phylogenetic position of the Adriatic (Upper Cretaceous; Cenomanian) dolichosaur Pontosaurus lesinensis (Kornhuber, 1873). Journal of Vertebrate Paleontology, 24, 373–386.

    Article  Google Scholar 

  • Polcyn, M. (2008). Braincase evolution in plioplatecarpine mosasaurs. Journal of Vertebrate Paleontology, 28(3), 128A.

    Google Scholar 

  • Polcyn, M. (2010). Sensory adaptations in mosasaurs. Journal of Vertebrate Paleontology, 30(3), 146A.

    Google Scholar 

  • Polcyn, M. J., Jacobs, L. L., & Haber, A. (2005). A morphological model and CT assessment of the skull of Pachyrhachis problematicus (Squamata, Serpentes), a 98 million year old snake with legs from the Middle East. Palaeontologia Electronica, no. 8.1.26.

    Google Scholar 

  • Prothero, D. R., & Estes, R. (1980). Late Jurassic lizards from Como Bluff, Wyoming, and their palaeobiogeographic significance. Nature, 286, 484–486.

    Article  Google Scholar 

  • Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata including 4161 species of lizards and snakes. BMC Evolutionary Biology, doi:10.1186/1471.2148.13.93.

    PubMed  PubMed Central  Google Scholar 

  • Rage, J. C., Métais, G., Bartolini, A., Brohi, I. A., et al. (2014). First report of the giant snake Gigantophis (Madtsoiidae) from the Paleocene of Pakistan: Paleobiogeographic implications. Geobios, 47, 147–153.

    Article  Google Scholar 

  • Reeder, T. W., Townsend, T. M., Mulcahy, D. G., Noonan, B. P., et al. (2015) Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE, 10(3), doi:10.1371/journal.pone.0118199.

    Google Scholar 

  • Rieppel, O. (1980). The sound-transmitting apparatus in primitive snakes and its phylogenetic significance. Zoomorphology, 96, 45–62.

    Article  Google Scholar 

  • Rieppel O. (1985). The recessus scalae tympani and its bearings on the classification of reptiles. Journal of Herpetology, 19, 373–384.

    Article  Google Scholar 

  • Rieppel, O., & Zaher, H. (2000). The braincases of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society, 129, 489–514.

    Article  Google Scholar 

  • Rieppel, O., Walker, A., & Odhiambo, I. (1992). A preliminary report on a fossil chamaeleonine (Reptilia: Chamaeleoninae) skull from the Miocene of Kenya. Journal of Herpetology, 26, 77–80.

    Article  Google Scholar 

  • Rieppel, O., Kluge, A. G., & Zaher, H. (2003a) Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith. Journal of Vertebrate Paleontology, 22(4), 812–829.

    Article  Google Scholar 

  • Rieppel, O., Zaher, H., Tchernov, E., & Polcyn, M. J. (2003b). The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle East. Journal of Paleontology, 77, 536–558.

    Google Scholar 

  • Robinson, P. L. (1962). Gliding lizards from the Upper Keuper of Great Britain. Proceedings of the Geological Society London, 1601, 137–146.

    Google Scholar 

  • Robinson, P. L. (1973). A problematic reptile from the British Upper Trias. Journal of the Geological Society of London, 129, 457–479.

    Article  Google Scholar 

  • Ross, C. F., Sues, H-D., & De Klerk, W. J. (1999). Lepidosaurian remains from the Lower Cretaceous Kirkwood Formation of South Africa. Journal of Vertebrate Paleontology, 19, 21–27.

    Article  Google Scholar 

  • Russell, D. A. (1967) Systematics and morphology of American mosasaurs. Bulletin of the Peabody Museum of Natural History, 23, 1–240.

    Google Scholar 

  • Scanlon, J. D. (2005). Cranial morphology of the Plio-Pleistocene giant madtsoiid snake Wonambi naracoortensis. Acta Palaeontologica Polonica, 50, 139–180.

    Google Scholar 

  • Scanlon, J. D. (2006). Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439, 839–842.

    Article  CAS  PubMed  Google Scholar 

  • Scanlon, J. D., & Lee, M. S. Y. (2000). The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403, 416–420.

    Article  CAS  PubMed  Google Scholar 

  • Simões, B. F., Sampaio, F. L., Jared, C., Antoniazzi, M. M., et al. (2015). Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology, doi:10.1111/eb.12663.

    Google Scholar 

  • Sipla, J. S., & Spoor, F. (2008). The physics and physiology of balance. In J. G. M. Thewissen & S. Nummela (Eds.), Sensory evolution on the threshold: Adaptations in secondarily aquatic vertebrates (pp. 227–232). Berkeley (CA): University of California Press.

    Google Scholar 

  • TaÅ‚anda, M. (2016). Cretaceous roots of the amphisbaenian lizards. Zoologica Scripta, 45, 1–8.

    Article  Google Scholar 

  • Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., & Jacobs, L. J. (2000). A new fossil snake with limbs. Science, 287, 2010–2012.

    Article  CAS  PubMed  Google Scholar 

  • Townsend, T. M., Larson, A., Louis, E., & Macey, J. R. (2005). Molecular phylogenetics of Squamata: The position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Systematic Biology, 53, 735–757.

    Article  Google Scholar 

  • Vidal, N., & Hedges, B. (2005). The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes rendus Biologies, 328, 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  • Walls, G. L. (1940). Ophthalmological implications for the early history of the snakes. Copeia, 1940(1), 1–8.

    Article  Google Scholar 

  • Walsh, S. A., Luo, Z.-X., & Barrett, P. M. (2013). Modern imaging techniques as a window to prehistoric auditory worlds. In C. Koppl, G. A. Manley, A. N. Popper, & R. R. Fay. (Eds.), Insights from comparative hearing research (pp. 227–261). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Wever, E. G. (1973). The function of the middle ear in lizards: Divergent types. Journal of Experimental Biology, 184, 97–126.

    CAS  Google Scholar 

  • Wever, E. G. (1978). The reptile ear. Princeton: Princeton University Press.

    Google Scholar 

  • Wever, E. G., & Vernon, J. A. (1956) Sound transmission in the turtle’s ear. Proceedings of the National Academy of Sciences of the USA, 42, 292–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wever, E. G., & Werner, Y. L. (1970). The function of the middle ear in lizards: Crotaphytus collaris Iguanidae). Journal of Experimental Zoology, 175, 327–342.

    Article  CAS  PubMed  Google Scholar 

  • Wever, E. G., & Gans, C. (1973) The ear in Amphisbaenia (Reptilia); further anatomical observations. Journal of Zoology, 171, 189–206.

    Article  Google Scholar 

  • Whiteside, D. I. (1986). The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen.et.sp.nov. and the modernising of a living fossil. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 312, 379–430.

    Article  Google Scholar 

  • Wiens, J. J., & Slingluff, J. L. (2001). How lizards turn into snakes: A phylogenetic analysis of body-form evolution in anguid lizards. Evolution, 55, 2303–2318.

    Article  CAS  PubMed  Google Scholar 

  • Wiens, J. J., Brandley, M. C., & Reeder, T. W. (2006). Why does a trait evolve multiple times within a clade? Repeated evolution of snake-like body form in squamate reptiles. Evolution, 60, 123–141.

    PubMed  Google Scholar 

  • Wiens, J. J., Kuczynski, C. A., Townsend, T. M., Reeder, T. W., et al. (2010). Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: Molecular data change the placement of fossil taxa. Systematic Biology, 59, 674–688.

    Article  CAS  PubMed  Google Scholar 

  • Wiens, J. J., Hutter, C. R., Mulcahy, D. G., Noonan, B. P., et al. (2012). Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8, 1043–1046.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Wilson, J. A., Mohabey, D. M., Peters, S. E., & Head, J. J. (2010). Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biology, doi:10.1371/journal.pbio.1000322.

    Google Scholar 

  • Wu, X.-C. (1994). Late Triassic-Early Jurassic sphenodontians (Clevosaurs) from China and the phylogeny of the Sphenodontida. In N. C. Fraser and H.-D. Sues (Eds.), In the shadow of the dinosaurs: Early Mesozoic tetrapods (pp. 38–69). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wu, X.-C., Brinkman, D. B., & Russell, A. P. (1996). Sineoamphisbaena hexatabularis, an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People’s Republic of China), and comments in the phylogenetic relationships of the Amphisbaenia. Canadian Journal of Earth Sciences, 33, 541–577.

    Article  Google Scholar 

  • Yi, H. & Norell, M. A. (2015). The burrowing origin of modern snakes. Science Advances, 1(10), e1500743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi, H., Sampath, D., Schoenfeld, S., & Norell, M. A. (2012). Reconstruction of inner ear shape and size in mosasaurs (Reptilia: Squamata) reveals complex adaptation strategies in secondary aquatic reptiles. Journal of Vertebrate Paleontology, 32, 198A.

    Article  Google Scholar 

  • Zaher, H., & Rieppel, O. (2002). On the phylogenetic relationships of the Cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes). Journal of Vertebrate Paleontology, 22, 104–109.

    Article  Google Scholar 

  • Zaher, H., & Scanferla, C. A. (2012). The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164, 194–238.

    Article  Google Scholar 

  • Zaher, H., Apesteguia, S., & Scanferla, C. A. (2009). The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguia & Zaher, 2006, and the evolution of limblessness in snakes. Zoological Journal of the Linnean Society, 156, 801–826.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Jenny Clack for the invitation to participate in this project; to Hilary Maddin for the advanced copy of Cuthbertson et al. on the ear and braincase of the mosasaur Plioplatecarpus; to the libraries of UCL and the Zoological Society of London for access to literature; and to James Turbett and Liping Dong for many hours of interesting discussions on squamate inner ears and for the HRXCT scan images of braincases and inner ears. Thanks also to colleagues who kindly provided original photographs/scan images of Sineoamphisbaena hexatabularis (Yuan Wang and Liping Dong, IVPP, Beijing, China); Rhineura hatcherii (Jessica Maisano, University of Texas, Austin, USA); Tylosaurus and Platecarpus (Mike Everhart, Sternberg Museum, Kansas, USA); and Dinilysia patagonica (Hussam Zaher, Museu de Zoologia, Universidade de São Paulo, Brazil). Jenny Clack and Art Popper provided helpful feedback on an earlier draft.

Compliance with Ethics Requirements Susan E. Evans had no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Evans, S.E. (2016). The Lepidosaurian Ear: Variations on a Theme. In: Clack, J., Fay, R., Popper, A. (eds) Evolution of the Vertebrate Ear . Springer Handbook of Auditory Research, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-319-46661-3_9

Download citation

Publish with us

Policies and ethics