Skip to main content

3D Reconstruction of Spinal Posture of the Kebara 2 Neanderthal

  • Chapter
  • First Online:

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Spinal posture has vast biomechanical , locomotor and pathological implications in hominins . Assessing the curvatures of the spine of fossil hominins can provide important information towards the understanding of their paleobiology. Unfortunately, complete hominin spines are very rarely preserved in the fossil record. The Neanderthal partial skeleton, Kebara 2 from Israel, constitutes a remarkable exception, representing an almost complete spine and pelvis. The aim of this study is, therefore, to create a new 3D virtual reconstruction of the spine of Kebara 2. To build the model, we used the CT scans of the sacrum, lumbar and thoracic vertebrae of Kebara 2, captured its 3D morphology, and, using visualization software (Amira 5.2©), aligned the 3D reconstruction of the original bones into the spinal curvature. First we aligned the sacrum and then we added one vertebra at a time, until the complete spine (T1-S5) was intact. The amount of spinal curvature (lordosis and kyphosis), the sacral orientation, and the coronal plane deviation was determined based on the current literature or measured and calculated specifically for this study based on published methods. This reconstruction provides, for the first time, a complete 3D virtual reconstruction of the spine of an extinct hominin. The spinal posture and spinopelvic alignment of Kebara 2 show a unique configuration compared with that of modern humans, suggesting locomotor and weight-bearing differences between the two. The spinal posture of Kebara 2 also shows slight asymmetry in the coronal plane. Stature estimation of Kebara 2 based on spinal length confirms that the height of Kebara 2 was around 170 cm. This reconstruction can now serve as the basis for a more complete reconstruction of the Kebara 2 specimen, which will include other parts of this remarkable fossil, such as the pelvis, the rib cage and the cervical spine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Thoracic kyphosis calculation: Anterior vertebral body height for Kebara 2 is 226.01 mm while posterior vertebral body height for Kebara 2 is 243.38 mm, and the ratio between the two of 0.9286 (Table 18.2). The regression model of Goh et al. (1999) yields a thoracic kyphosis of 44° (=297.114 – 272.31 * 0.9286). The average thoracic kyphosis in modern humans is 46–53° (Table 18.1), so the 44° of kyphosis in Kebara 2 is within the normal range of kyphosis for humans, but slightly below the modern human average.

  2. 2.

    Scoliosis is a general term comprising a heterogeneous set of conditions, consisting of changes in the shape and position of the spine, thorax and trunk, and can be defined as a 3D torsional deformity of the spine and trunk. Scoliosis causes a lateral curvature in the frontal and an axial rotation in the horizontal plane (Negrini et al. 2012). Scoliosis can also cause an abnormality in the sagittal plane, but this does not occur in all cases. Scoliotic deformity of the spine is associated with osseous changes in vertebral morphology. Modi et al. (2008) showed lateral vertebral body wedging of five consecutive segments in scoliotic patients. He also showed that the wedging of the apex vertebra is 4.08° ± 2.4° when thoracic scoliosis <30° while the wedging of the apex vertebra is 2.7° ± 5.8° when thoracic scoliosis >30°. Stokes and Aronsson (2001) found that even small scoliotic deformities include vertebral wedging and that the vertebrae generally show larger deformity than the discs in thoracic scoliosis. They also report an average vertebral lateral wedging of 3.7° ± 2.6° with scoliotic deformity of 20.2° ± 7.3°. Coillard and Rivard (1996) found that in scoliotic vertebrae the spinous process is slightly curved towards the side of convexity. They also report asymmetry in the orientation of the transverse processes.

References

  • Adams, M. A., McNally, D. S., Chinn, H., & Dolan, P. (1994). Posture and the compressive strength of the lumbar spine. International society of biomechanics award paper. Clinical Biomechanics, 9, 5–14.

    Article  Google Scholar 

  • Adams, M. A., Mannion, A. F., & Dolan, P. (1999). Personal risk factors for first-time low back pain. Spine, 24, 2497–2505.

    Article  Google Scholar 

  • Arensburg, B. (1991). The vertebral column, thoracic cage and hyoid bone. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérien de Kébara 2 (pp. 113–146). Paris: CNRS.

    Google Scholar 

  • Arensburg, B., Bar-Yosef, O., Chech, M., Goldberg, P., Laville, H., Meignen, L., et al. (1985). Une sépulture néandertalienne dans la grotte de Kebara (Israel). Comptes Rendus de l’Académie des Sciences, 300, 227–230.

    Google Scholar 

  • Arjmand, N., & Shirazi-Adl, A. (2005). Biomechanics of changes in lumbar posture in static lifting. Spine, 30, 2637–2648.

    Article  Google Scholar 

  • Bae, J. S., Jang, J. S., Lee, S. H., & Kim, J. U. (2012). Radiological analysis of lumbar degenerative kyphosis in relation to pelvic incidence. The Spine Journal, 12, 1045–1051.

    Article  Google Scholar 

  • Barnes, E. (2012). Atlas of developmental field anomalies of the human skeleton. A paleopathology perspective. New Jersey: Wiley-Blackwell.

    Book  Google Scholar 

  • Barrey, C., Jund, J., Noseda, O., & Roussouly, P. (2007). Sagittal balance of the pelvis–spine complex and lumbar degenerative diseases. A comparative study about 85 cases. European Spine Journal, 16, 1459–1467.

    Article  Google Scholar 

  • Been, E. (2005). The anatomy of the lumbar spine of Homo neanderthalensis and its phylogenetic and functional implications. PhD Dissertation, Tel Aviv University.

    Google Scholar 

  • Been, E., Pessah, H., Been, L., Tawil, A., & Peleg, S. (2007). New method for predicting the lumbar lordosis angle in skeletal material. The Anatomical Record, 290, 1568–1573.

    Article  Google Scholar 

  • Been, E., Barash, A., Pessah, H., & Peleg, S. (2010). A new look at the geometry of the lumbar spine. Spine, 35, E1014–E1017.

    Article  Google Scholar 

  • Been, E., Gómez-Olivencia, A., & Kramer, P. A. (2012). Lumbar lordosis of extinct hominins. American Journal of Physical Anthropology, 147, 64–77.

    Article  Google Scholar 

  • Been, E., Pessah, H., Peleg, S., & Kramer, P. (2013). Sacral orientation in hominin evolution. Advances in Anthropology, 3, 133–141.

    Article  Google Scholar 

  • Been, E., Gómez-Olivencia, A., & Kramer, P. A. (2014). Lumbar lordosis in extinct hominins: Implications of the pelvic incidence. American Journal of Physical Anthropolgy, 154, 307–314.

    Article  Google Scholar 

  • Bonmatí, A., Gómez–Olivencia, A., Arsuaga, J.-L., Carretero, J. M., Gracia, A, Martínez, I., et al. (2010). A Middle Pleistocene lower back and pelvis from an aged individual from the Sima de los Huesos site, Spain. Proceedings of the National Academy of Science USA, 107, 18386–18391.

    Google Scholar 

  • Booth, C. K., Bridwell, K. H., Lenke, L. G., Baldus, C. R., & Blanke, K. M. (1999). Complications and predictive factors for the successful treatment of flat back deformity (fixed sagittal imbalance). Spine, 24, 1712–1720.

    Article  Google Scholar 

  • Boulay, C., Tardieu, C., Hecquet, J., Benaim, C., Mouilleseaux, B., Marty, C., et al. (2006). Sagittal alignment of spine and pelvis regulated by pelvic incidence: Standard values and prediction of lordosis. European Spine Journal, 15, 415–422.

    Article  Google Scholar 

  • Carretero, J. M. Rodríguez, L., García-González, R., Arguaga, J.-L., Gómez–Olivencia, A., Lorenzo, C., et al. (2012). Stature estimation from complete long bones in the Middle Pleistocene humans from the Sima de los Huesos, Sierra de Atapuerca (Spain). Journal of Human Evolution, 62, 242–255.

    Google Scholar 

  • Chen, Y. L. (1999). Geometric measurements of the lumbar spine in Chinese men during trunk flexion. Spine, 24, 666–669.

    Article  Google Scholar 

  • Cil, A., Yazic, M., Uzumcugil, A., Kandemir, U., Alanay, A., Alanay, Y., et al. (2005). The evolution of sagittal alignment of the spine during childhood. Spine, 30, 93–100.

    Article  Google Scholar 

  • Cobb, J. R. (1948). Outline for the study of scoliosis. Instructional course lectures, The American academy of orthopaedic surgeons (Vol. 5, pp. 261–275). Ann Arbor: JW. Edwards.

    Google Scholar 

  • Coillard, C., & Rivard, C. H. (1996). Vertebral deformities and scoliosis. European Spine Journal, 5, 91–100.

    Article  Google Scholar 

  • Dickson, R. A., Lawton, J. O., Archer, I. A., & Butt, W. P. (1984). The pathogenesis of idiopathic scoliosis. Biplanar spinal asymmetry. Bone & Joint Journal, 66(1), 8–15.‏

    Google Scholar 

  • Duday, H., & Arensburg, B. (1991). La pathologie. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette moustérian de Kebara 2 (pp. 179–194). Paris: Editions CNRS.

    Google Scholar 

  • Farfan, H. F. (1995). Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine. Spine, 20, 1462–1474.

    Article  Google Scholar 

  • Fox, M., & Whitcome, K. K. (2011). Neanderthal lumbopelvic anatomy and the biomechanical effects of a reduced lumbar lordosis. Ph.D. Dissertation University of Cincinnati.

    Google Scholar 

  • Gelb, D. E., Lenke, L. G., Bridwell, K. H., Blanke, K. M., & McEnery, K. W. (1995). An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine, 20, 1351–1358.

    Article  Google Scholar 

  • Goh, S., Price, R. I., Leedman, P. J., & Singer, K. P. (1999). The relative influence of vertebral body and intervertebral disk shape on thoracic kyphosis. Clinical Biomechanics, 14, 439–448.

    Article  Google Scholar 

  • Gómez-Olivencia, A., Eaves-Johnson, K. L., Franciscus, R. G., Carretero, J. M., & Arsuaga, J.-L. (2009). Kebara 2: New insights regarding the most complete Neandertal thorax. Journal of Human Evolution, 57, 75–90.

    Article  Google Scholar 

  • Gómez-Olivencia, A., Been, E., Arsuaga, J.-L., & Stock, J. T. (2013). The Neandertal vertebral column. 1—The cervical spine. Journal of Human Evolution, 64, 608–630.

    Article  Google Scholar 

  • Gracovetsky, S., & Iacono, S. (1987). Energy transfer in the spinal cord. Journal of Biomedical Engineering, 9, 99–114.

    Article  Google Scholar 

  • Gracovetsky, S., Farfan, H., & Helleur, C. (1985). The abdominal mechanism. Spine, 10, 317–324.

    Article  Google Scholar 

  • Grasso, R., Zago, M., & Lacquaniti, F. (2000). Interactions between posture and locomotion: Motor patterns in humans walking with bent posture versus erect posture. Journal of Neurophysiology, 83, 288–300.

    Google Scholar 

  • Harrison, D. E., Cailliet, R., Harrison, D. D., Janik, T. J., & Holland, B. (2002). Changes in sagittal lumbar configuration with a new method of extension traction: Nonrandomized clinical controlled trial. Archives of Physical Medicine and Rehabilitation, 83, 1585–1591.

    Article  Google Scholar 

  • Hart, R. A., Badra, M. I., Madala, A., & Yoo, J. U. (2007). Use of pelvic incidence as a guide to reduction of H-type spino-pelvic dissociation injuries. Journal of Orthopedic Trauma, 21, 369–374.

    Article  Google Scholar 

  • Hirose, D., Ishida, K., Nagano, Y., Takahashi, T., & Yamamoto H. (2004). Posture of the trunk in the sagittal plane is associated with gait in community-dwelling elderly population. Clinical Biomechanics, 19, 57–63.

    Google Scholar 

  • Hosman, A. J., Langeloo, D. D., de Kleuver, M., Anderson, P. G., Veth R, P., & Slot, G. H. (2002). Analysis of the sagittal plane after surgical management for Scheuermann’s disease: A view on overcorrection and the use of an anterior release. Spine, 27, 167–175.

    Google Scholar 

  • Jackson, R. P., & Hales, C. (2000). Congruent spinopelvic alignment on standing lateral radiographs of adult volunteers. Spine, 25, 2808–2815.

    Article  Google Scholar 

  • Jang, J. S., Lee, S. H., Min, J. H., & Maeng, D. H. (2009). Influence of lumbar lordosis restoration on thoracic curve and sagittal position in lumbar degenerative kyphosis patients. Spine, 34, 280–2844.

    Article  Google Scholar 

  • Kimura, S., Steinbach, G. C., Watenpaugh, D. E., & Hargens, A. R. (2001). Lumbar spine disc height and curvature responses to an axial load generated by a compression device compatible with magnetic resonance imaging. Spine, 26, 2596–2600.

    Article  Google Scholar 

  • Korovessis, P. G., Stamatakis, M. V., & Baikousis, A. G. (1998). Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine, 23, 700–704.

    Article  Google Scholar 

  • Kunkel, M. A., Herkommer, M., Reinehr, M., Böckers, T. M., & Wilke, H. J. (2011). Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: An anatomical and radiographic study of the thoracic spine. Journal of Anatomy, 219, 375–387.

    Article  Google Scholar 

  • Kuntz, C., Levin, L. S., Ondra, S. L., Shaffrey, C. I., & Morgan, C. J. (2007). Neutral upright sagittal spinal alignment from the occiput to the pelvis in asymptomatic adults: A review and resynthesis of the literature. Journal of Neurosurgery Spine, 6, 104–112.

    Article  Google Scholar 

  • Legaye, J. (2007). The femoro-sacral posterior angle: An anatomical sagittal pelvic parameter usable with dome-shaped sacrum. European Spine Journal, 16, 219–225.

    Article  Google Scholar 

  • Mac-Thiong, J. M., Roussouly, P., Berthonnaud, E., & Guigui, P. (2010). Sagittal parameters of global spinal balance: Normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine, 35, E1193–E1198.

    Article  Google Scholar 

  • Masharawi, Y., Salame, K., Mirovsky, Y., Peleg, S., Dar, G., Steinberg, N., et al. (2008). Vertebral body shape variation in the thoracic and lumbar spine: Characterization of its asymmetry and wedging. Clinical Anatomy, 21, 46–54.

    Article  Google Scholar 

  • Modi, H. N., Suh, S. W., Song, H. R., Yang, J. H., Kim, H. J., & Modi, C. H. (2008). Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis: A cross sectional study in 150 patients. Scoliosis, 3, 1–9.

    Article  Google Scholar 

  • Nagesh, K. R., & Kumar, G. P. (2006). Estimation of stature from vertebral column length in South Indians. Legal Medicine, 8, 269–272.

    Article  Google Scholar 

  • Negrini, S., Aulisa, A. G., Aulisa, L., Circo, A. B., de Mauroy, J. C., Durmala, J., et al. (2012). 2011 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis, 7, 3.

    Google Scholar 

  • Peleg, S., Dar, G., Steinberg, N., Peled, N., Hershkovitz, I., & Masharawi, Y. (2007). Orientation of the human sacrum: Anthropological perspectives and methodological approaches. American Journal of Physical Anthropology, 133, 967–977.

    Article  Google Scholar 

  • Pearson, O. M. (2000). Postcranial remains and the origins of modern humans. Evolutionary Anthropology, 9, 229–247.

    Article  Google Scholar 

  • Rak, Y. (1991). The pelvis. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérian de Kebara 2 (pp. 113–146). Paris: Editions CNRS.

    Google Scholar 

  • Rak, Y., & Arensburg, B. (1987). Kebara 2 Neandertal pelvis: First look at a complete inlet. American Journal of Physical Anthropology, 73, 227–231.

    Article  Google Scholar 

  • Ruff, C. B. (1991). Climate and body shape in hominid evolution. Journal of Human Evolution, 21, 81–105.

    Article  Google Scholar 

  • Ruff, C. B., Niskanen, M., Junno, J. A., & Jamison, P. (2005). Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. Journal of Human Evolution, 48, 381–392.

    Article  Google Scholar 

  • Sanders, W. J. (1995). Function, allometry, and evolution of the australopithecine lower precaudal spine. Ph.D. Dissertation, New York University.

    Google Scholar 

  • Sanders, W. J. (1998). Comparative morphometric study of the Australopithecine vertebral series Stw-H8/H41. Journal of Human Evolution, 34, 249–302.

    Article  Google Scholar 

  • Sarwahi, V., Boachie-Adjei, O., Backus, S. I., & Taira, G. (2002). Characterization of gait function in patients with postsurgical sagittal (flatback) deformity—a prospective study of 21 patients. Spine, 27, 2328–2337.

    Google Scholar 

  • Sawyer, G. J., & Maley, B. (2005). Neanderthal reconstructed. The Anatomical Record, 283, 23–31.

    Article  Google Scholar 

  • Scherrer, S. A., Begon, M., Leardini, A., Coillard, C., Rivard, C. H., & Allard, P. (2013). Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis. PLoS ONE, 8, e71504.

    Article  Google Scholar 

  • Schiess, R., Boeni, T., Rühli, F., & Haeusler, M. (2014). Revisiting scoliosis in the KNM-WT 15000 Homo erectus skeleton. Jornal of Human Evolution, 67, 48–59.

    Article  Google Scholar 

  • Shefi, S., Soudack, M., Konen, E., & Been, E. (2013). Development of the lumbar lordotic curvature in children from age 2 to 20 years. Spine, 38, E602–E608.

    Article  Google Scholar 

  • Simon, P., Espinoza Orías, A. A., Andersson, G. B., An, H. S., & Inoue, N. (2012). In vivo topographic analysis of lumbar facet joint space width distribution in healthy and symptomatic subjects. Spine, 37, 1058–1064.

    Article  Google Scholar 

  • Stokes, I. A., & Aronsson, D. D. (2001). Disc and vertebral wedging in patients with progressive scoliosis. Journal of Spinal Disorders and Techniques, 14, 317–322.

    Article  Google Scholar 

  • Terazawa, K., Alkabane, H., Gotouda, H., Mizukami, K., Nagao, M., & Takatori, T. (1990). Estimating stature from the length of the lumbar part of the spine in Japanese. Medicine, Science and the Law, 30, 354–357.

    Google Scholar 

  • Vandermeersch, B. (1991). La ceinture scapulaire et les membres supérieures. In O. Bar Yosef & B. Vandermeersch (Eds.), Le squelette Moustérien de Kébara 2 (pp. 157–178). Paris: Editions CNRS.

    Google Scholar 

  • Vaz, G., Roussouly, P., Berthhonnaud, E., & Dimnet, J. (2002). Sagittal morphology and equilibrium of pelvis and spine. European Spine Journal, 11, 80–87.

    Article  Google Scholar 

  • Vialle, R., Levassor, N., Rillardon, L., Templier, A., Skalli, W., & Guigui, P. (2005). Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. Journal of Bone and Joint Surgery, 87, 260–267.

    Google Scholar 

  • Weaver, T. D. (2009). The meaning of Neandertal skeletal morphology. Proceedings of the National Academy of Science USA, 106, 16028–16033.

    Article  Google Scholar 

  • Whitcome, K. K., Shapiro, L. J., & Lieberman, D. E. (2007). Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature, 450, 1075–1078.

    Article  Google Scholar 

  • Williams, S. A., Ostrofsky, K. R., Frater, N., Churchill, S. E., Schmid, P., & Berger, L. R. (2013). The vertebral column of Australopithecus sediba. Science, 340, 1232996.

    Article  Google Scholar 

  • Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R., & Hughes, S. P. (2000). Geometric dimensions of the lower lumbar vertebrae: Analysis of data from digitized CT images. European Spine Journal, 9, 242–248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ella Been .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Been, E., Gómez-Olivencia, A., Kramer, P.A., Barash, A. (2017). 3D Reconstruction of Spinal Posture of the Kebara 2 Neanderthal. In: Marom, A., Hovers, E. (eds) Human Paleontology and Prehistory. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-46646-0_18

Download citation

Publish with us

Policies and ethics