Skip to main content

Manufacturing System Real-Time Energy Flexibility Control and Improvement

  • Chapter
  • First Online:
Simulation Approach Towards Energy Flexible Manufacturing Systems
  • 789 Accesses

Abstract

Within the first chapter, two research questions have been formulated, the current state of technology has been summarized in Chap. 2, followed by reviewing and summarizing existing research (Chap. 3). As a result, research demand has been identified. Therefore, this chapter starts with a definition of main objectives for a novel concept which aims at fulfilling identified research demand. Concept-specific requirements are derived in a next step. Thereon, a planning and improvement framework to establish the concept’s role in a manufacturing company is briefly introduced. The concept’s overall structure is provided and its elements and interactions described. The remainder of the chapter is structured along the concept’s system behavior model elements, which are qualitatively and mathematically described in each corresponding subsection. The chapter closes with a description of an application cycle and an intermediate concluding summary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term manufacturing management is used here instead of the more general term production management introduced in Chap. 2 (theoretical background) to highlight the manufacturing focus.

  2. 2.

    The term losses is used here to differentiate from a desired energy outflow from the battery, although losses are, with regards to the law of conservation of energy, one type of outflow from the system.

References

  • Abele, E., Panten, N., & Menz, B. (2015). Data collection for energy monitoring purposes and energy control of production machines. Procedia CIRP, 29, 299–304. http://dx.doi.org/10.1016/j.procir.2015.01.035.

  • Andrea, D. (2010). Battery management systems for large lithium ion battery packs. Norwood: Artech House.

    Google Scholar 

  • Apple Inc. (2015). Batteries - Why Lithium-ion? Retrieved June 19, 2015, from http://www.apple.com/uk/batteries/why-lithium-ion/.

  • Aström, K. J., & Murray, R. M. (2008). Feedback systems: an introduction for scientists and engineers (2.11b ed.). Princeton: Princeton University Press.

    Google Scholar 

  • AWF. (2005). Praktischer Einsatz von Kennzahlen und Kennzahlensystemen in der Produktion. AWF-Selbstverlag, Eschborn.

    Google Scholar 

  • Bajpai, P., & Dash, V. (2012). Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renewable and Sustainable Energy Reviews, 16(5), 2926–2939. http://dx.doi.org/10.1016/j.rser.2012.02.009.

  • Banerjee, S. (2014). Mathematical modeling: models, analysis and applications. Boca Raton, FL: Taylor and Francis Group.

    MATH  Google Scholar 

  • Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111–2118.

    Article  Google Scholar 

  • Bertsche, B., & Lechner, G. (2004). Zuverlässigkeit im Fahrzeug- und Maschinenbau (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Bhandari, B., Poudel, S. R., Lee, K.-T., & Ahn, S.-H. (2014). Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing Technology, 1(2), 157–173. http://link.springer.com/10.1007/s40684-014-0021-4.

  • Bierbaum, U., & Hütter, J. (2004). Druckluft Kompendium (6th ed.). Darmstadt: Hoppenstedt-Verlag.

    Google Scholar 

  • Birolini, A. (1999). Reliability engineering: theory and practice (3rd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Brecht, U. (2012). BWL für Führungskräfte: Was Entscheider im Unternehmen wissen müssen (2nd ed.). Wiesbaden: Springer Gabler.

    Book  Google Scholar 

  • Brent, A. C., & Rogers, D. E. (2010). Renewable rural electrification: Sustainability assessment of mini-hybrid off-grid technological systems in the African context. Renewable Energy, 35(1), 257–265. http://dx.doi.org/10.1016/j.renene.2009.03.028.

  • Chiang, S. Y., Kuo, C. T., & Meerkov, S. M. (1998). Bottlenecks in Markovian production lines: A systems approach. IEEE Transactions on Robotics and Automation, 14(2), 352–359.

    Article  Google Scholar 

  • Chung, C. A. (2004). Simulation modeling handbook: a practical approach. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Colett, J. S., Kelly, J. C., & Keoleian, G. A. (2015). Using nested average electricity allocation protocols to characterize electrical grids in life cycle assessment: A case study of U.S. primary aluminum production. Journal of Industrial Ecology, 20(1), 29–41.

    Article  Google Scholar 

  • Deshmukh, M. K., & Deshmukh, S. S. (2008). Modeling of hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 12(1), 235–249.

    Article  Google Scholar 

  • Deutsches Institut für Normung e. V. (2011). DIN 22101: Continuous conveyors - belt conveyors for loose bulk materials - basis for calculation and dimensioning.

    Google Scholar 

  • Dodson, B., & Nolan, D. (2002). Reliability engineering handbook. Tucson, AZ: QA Publishing LLC.

    Google Scholar 

  • Dombrowski, U., & Ernst, S. (2013). Scenario-based simulation approach for layout planning. Procedia CIRP, 12, 354–359. http://dx.doi.org/10.1016/j.procir.2013.09.061.

  • Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., et al. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals - Manufacturing Technology, 61(2), 587–609. http://linkinghub.elsevier.com/retrieve/pii/S0007850612002016.

  • Ecoult (2015a). Solar Energy Shifting and Power Smoothing. Retrieved October 8, 2015, from http://www.ecoult.com/case-studies/pnm-nm-usa-solar-power-smoothing-and-energy-shifting/.

  • Ecoult (2015b). Wind Smoothing and Ramp Rate Control. Retrieved October 8, 2015, from http://www.ecoult.com/case-studies/hampton-wind-farm-australia-wind-smoothing/.

  • Eley, M. (2012). Simulation in der Logistik: Eine Einführung in die Erstellung ereignisdiskreter Modelle unter Verwendung des Werkzeugs “Plant Simulation”. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Forrester, J. W. (1993). System dynamics and the lessons of 35 years. In K. B. De Greene (Ed.), A system-based approach to policymaking (pp. 199–240). New York, NY, US: Springer.

    Chapter  Google Scholar 

  • Fraunhofer, I. S. I. (2003). Druckluft effizient. Technical report, Karlsruhe.

    Google Scholar 

  • Galitz, W. O. (2007). The essential guide to user interface design: An introduction to GUI design principles and techniques (3rd ed.). Indianapolis, IN: Wiley.

    Google Scholar 

  • Graßl, M. (2015). Bewertung der Energieflexibilität in der Produktion. München: Herbert Utz Verlag.

    Google Scholar 

  • Graßl, M., Vikdahl, E., & Reinhart, G. (2013). A petri-net based approach for evaluating energy flexibility of production machines. In M. Zäh (Ed.), 5th International Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2013) (pp. 303–308) Munich, Switzerland: Springer International Publishing.

    Google Scholar 

  • Guasch, D., & Silvestre, S. (2003). Dynamic battery model for photovoltaic applications. Progress in Photovoltaics: Research and Applications, 11(3), 193–206.

    Article  Google Scholar 

  • Günther, H.-O., & Tempelmeier, H. (2005). Produktion und Logistik (6th ed.). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Gutowski, T. G., Dahmus, J., & Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In 13th CIRP International Conference Life Cycle Engineering (pp. 623–627), Lueven.

    Google Scholar 

  • Herrmann, C. (2010). Ganzheitliches Life Cycle Management: Nachhaltigkeit und Lebenszyklusorientierung in Unternehmen. Heidelberg, Dordrecht, London, New York: Springer.

    Google Scholar 

  • Herrmann, C., Schmidt, C., Kurle, D., Blume, S., & Thiede, S. (2014). Sustainability in manufacturing and factories of the future. International Journal of Precision Engineering and Manufacturing Technology, 1(4), 283–292. http://link.springer.com/10.1007/s40684-014-0034-z.

  • Icha, P. (2014). Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 bis 2013. Technical report, Umweltbundesamt, Dessau-Roßlau.

    Google Scholar 

  • IHK Nürnberg für Mittelfranken. (2012). Druckluft effizient nutzen. Technical report, Industrie- und Handelskammer Nürnberg für Mittelfranken.

    Google Scholar 

  • Javied, T., Rackow, T., & Franke, J. (2015). Implementing energy management system to increase energy efficiency in manufacturing companies. Procedia CIRP, 26, 156–161. http://linkinghub.elsevier.com/retrieve/pii/S2212827114008701.

  • Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281–311.

    Article  Google Scholar 

  • Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals - Manufacturing Technology, 60(1), 37–40. http://linkinghub.elsevier.com/retrieve/pii/S0007850611000199.

  • Kuo, C.-T., Lim, J.-T., & Meerkov, S. M. (1996). Bottlenecks in serial production lines: A system-theoretic approach. Mathematical Problems in Engineering, 2, 233–276.

    Article  MATH  Google Scholar 

  • Li, W., & Kara, S. (2011). An empirical model for predicting energy consumption of manufacturing processes: A case of turning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1636–1646.

    Article  Google Scholar 

  • Li, L., Chang, Q., Ni, J., Xiao, G., & Biller, S. (2007). Bottleneck detection of manufacturing systems using data driven method. In IEEE International Symposium Assembly Manufacturing (pp. 76–81), Ann Arbor, MI. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4288452.

  • Li, L., Chang, Q., & Ni, J. (2009). Data driven bottleneck detection of manufacturing systems. International Journal of Production Research, 47(18), 5019–5036.

    Article  MATH  Google Scholar 

  • Li, J., Gee, A. M., Zhang, M., & Yuan, W. (2015). Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model. Energy, 86, 175–185. http://linkinghub.elsevier.com/retrieve/pii/S0360544215004843.

  • Loos, P. (1999). Grunddatenverwaltung und Betriebsdatenerfassung als Basis der Produktionsplanung und -steuerung. In H. Corsten & B. Friedl (Eds.), Produktionscontrolling (pp. 227–252). München: Vahlen.

    Google Scholar 

  • Mason, S. J., Fowler, J. W., & Matthew Carlyle, W. (2002). A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops. Journal of Scheduling, 5(3), 247–262.

    Article  MathSciNet  MATH  Google Scholar 

  • May, G., Barletta, I., Stahl, B., & Taisch, M. (2015). Energy management in production: A novel method to develop key performance indicators for improving energy efficiency. Applied Energy, 149, 46–61. http://linkinghub.elsevier.com/retrieve/pii/S0306261915003578.

  • Meadows, D. H. (2008). Thinking in systems: A primer. London: Sustainability institute.

    Google Scholar 

  • Mietzner, D. (2009). Strategische Vorausschau und Szenarienanalysen: Methodenevaluation und neue Ansätze. Wiesbaden: Gabler.

    Book  Google Scholar 

  • Mönch, L., & Zimmermann, J. (2007). Simulation-based assessment of machine criticality measures for a shifting bottleneck scheduling approach in complex manufacturing systems. Computers in Industry, 58(7), 644–655.

    Article  Google Scholar 

  • Müller, E., Engelmann, J., Löffler, T., & Strauch, J. (2009). Energieeffiziente Fabriken planen und betreiben. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Park, G.-J. (2007). Analytic methods for design practice. London: Springer.

    MATH  Google Scholar 

  • Paulus, M., & Borggrefe, F. (2011). The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Applied Energy, 88(2), 432–441.

    Article  Google Scholar 

  • Posselt, G. (2016). Towards energy transparent factories. Cham, Switzerland: Springer International Publishing.

    Book  Google Scholar 

  • Rabe, M., Spieckermann, S., & Wenzel, S. (2008). Verifikation und Validierung für die Simulation in Produktion und Logistik: Vorgehensmodelle und Techniken. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Rojas, C. R., Welsh, J. S., Goodwin, G. C., & Feuer, A. (2007). Robust optimal experiment design for system identification. Automatica, 43(6), 993–1008.

    Article  MathSciNet  MATH  Google Scholar 

  • Roser, C., Lorentzen, K., & Deuse, J. (2014). Reliable shop floor bottleneck detection for flow lines through process and inventory observations. Procedia CIRP, 19, 63–68. http://linkinghub.elsevier.com/retrieve/pii/S2212827114006520.

  • Ruppelt, E. (2003). Druckluft Handbuch (4th ed.). Essen: Vulkan-Verlag.

    Google Scholar 

  • Schuh, G., & Stich, V. (2012). Produktionsplanung und -steuerung 1: Grundlagen der PPS (4th ed.). Berlin, Heidelberg: Springer Vieweg.

    Google Scholar 

  • Schultz, C., Sellmaier, P., & Reinhart, G. (2015). An approach for energy-oriented production control using energy flexibility. Procedia CIRP, 29, 197–202.

    Google Scholar 

  • Shneiderman, B., & Plaisant, C. (2005). Designing the user interface: strategies for effective human-computer interaction (4th ed.). Boston: Pearson/Addison-Wesley.

    Google Scholar 

  • Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197–207. http://linkinghub.elsevier.com/retrieve/pii/S0959652613008780.

  • Sproedt, A., Plehn, J., Schönsleben, P., & Herrmann, C. (2015). A simulation-based decision support for eco-efficiency improvements in production systems. Journal of Cleaner Production, 105, 389–405.

    Article  Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA: The McGraw-Hill Companies Inc.

    Google Scholar 

  • Sun, Z., & Li, L. (2014). Potential capability estimation for real time electricity demand response of sustainable manufacturing systems using Markov Decision Process. Journal of Cleaner Production, 65, 184–193. http://linkinghub.elsevier.com/retrieve/pii/S0959652613005738.

  • Thiede, S. (2012). Energy efficiency in manufacturing systems. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • United Nations. (2009). Recommendations on the transport of dangerous goods. New York, NY Geneva: United Nations Publications.

    Google Scholar 

  • von Colbe, W. B. (1969). Kennzahlen und Kennzahlensysteme als Mittel der Organisation und Führung von Unternehmen. Wiesbaden: Springer.

    Google Scholar 

  • Wiendahl, H.-P. (2014). Betriebsorganisation für Ingenieure (8th ed.). München: Hanser Verlag.

    Google Scholar 

  • Wilker, H. (2010). Weibull-Statistik in der Praxis: Leitfaden zur Zuverlässigkeitsermittlung technischer Komponenten (2nd ed.). Norderstedt: Books on Demand GmbH.

    Google Scholar 

  • Yang, H., Lu, L., & Zhou, W. (2007). A novel optimization sizing model for hybrid solar-wind power generation system. Solar Energy, 81(1), 76–84.

    Article  Google Scholar 

  • Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar-wind power generation system. Applied Energy, 86(2), 163–169.

    Article  Google Scholar 

  • Yusta, J., Torres, F., & Khodr, H. (2010). Optimal methodology for a machining process scheduling in spot electricity markets. Energy Conversion and Management, 51(12), 2647–2654. http://linkinghub.elsevier.com/retrieve/pii/S0196890410002098.

  • Zhai, Y., Sun, S., Wang, J., & Niu, G. (2011). Job shop bottleneck detection based on orthogonal experiment. Computers and Industrial Engineering, 61(3), 872–880.

    Article  Google Scholar 

  • Zhang, Y., Hu, W., Chen, Z., & Cheng, M. (2013). Mitigation of wind power fluctuation by active current control of variable speed wind turbines. International Journal of Smart Grid and Clean Energy, 2(2), 252–257.

    Article  Google Scholar 

  • Zhou, Z., & Li, L. (2013). Real time electricity demand response for sustainable manufacturing systems considering throughput bottleneck detection. In IEEE International Conference on Automation Science and Engineering (pp. 640–644). Madison, WI.

    Google Scholar 

  • Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Applied Energy, 87(2), 380–389. http://dx.doi.org/10.1016/j.apenergy.2009.08.012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Beier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beier, J. (2017). Manufacturing System Real-Time Energy Flexibility Control and Improvement. In: Simulation Approach Towards Energy Flexible Manufacturing Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-46639-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46639-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46638-5

  • Online ISBN: 978-3-319-46639-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics