Skip to main content

Existing Approaches in the Field of Energy Flexible Manufacturing Systems

  • Chapter
  • First Online:
Simulation Approach Towards Energy Flexible Manufacturing Systems

Abstract

The formulated bottom-up research question from Chap. 1 is focused on methods and tools towards flexible electricity demand of industry. The second chapter described theoretical background on manufacturing systems, their energy demand and energy flexibility. Consequently, the next step is to review, classify, and evaluate existing approaches to identify what methods towards fulfillment of mentioned research question are already available and to analyze potential gaps. As outlined in the previous chapter, described research question is closely related to the topic of energy flexibility, which is selected as the focal point for identifying existing methods. First, general considerations for selecting and classifying approaches are described, which also covers criteria for including and excluding approaches for detailed review. Selected publications are then reviewed in detail. Detailed evaluation criteria are derived from presented theoretical background (Chap. 2) and analyzed publications. This evaluation framework is then applied to previously summarized approaches. The result is a comprehensive overview of the current state of existing research on energy flexibility, with a focus on manufacturing. Based on this, gaps are identified and prevailing research demand is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the structure and references of this paragraph are based on Beier et al. (2017).

  2. 2.

    Partly based on Beier et al. (2017).

  3. 3.

    Note that additions (especially a GUI and implementation through PLCs) to Babu and Ashok (2008) from Ashok (2010) and Mohan and Ashok (2011) have been reflected in the evaluation of Babu and Ashok (2008).

References

  • Abele, E., Braun, S., & Schraml, P. (2015a). Holistic simulation environment for energy consumption prediction of machine tools. Procedia CIRP, 29, 251–256.

    Article  Google Scholar 

  • Abele, E., Panten, N., & Menz, B. (2015b). Data collection for energy monitoring purposes and energy control of production machines. Procedia CIRP, 29, 299–304. doi:10.1016/j.procir.2015.01.035.

  • Alcázar-Ortega, M., Álvarez-Bel, C., Domijan, A., & Escrivá-Escrivá, G. (2012). Economic and environmental evaluation of customers’ flexibility participating in operation markets: Application to the meat industry. Energy, 41(1), 368–379. doi:10.1016/j.energy.2012.03.003.

    Article  Google Scholar 

  • Alcázar-Ortega, M., Álvarez-Bel, C., Escrivá-Escrivá, G., & Domijan, A. (2012b). Evaluation and assessment of demand response potential applied to the meat industry. Applied Energy, 92, 84–91.

    Article  Google Scholar 

  • Arteconi, A., Hewitt, N., & Polonara, F. (2012). State of the art of thermal storage for demand-side management. Applied Energy, 93, 371–389.

    Article  Google Scholar 

  • Ashok, S. (2006). Peak-load management in steel plants. Applied Energy, 83(5), 413–424.

    Article  Google Scholar 

  • Ashok, S. (2010). PLC-based load management in steel rolling mills. Energy Engineering, 107(4), 38–53.

    Google Scholar 

  • Ashok, S., & Banerjee, R. (2000). Load-management applications for the industrial sector. Applied Energy, 66(2), 105–111.

    Article  Google Scholar 

  • Ashok, S., & Banerjee, R. (2001). An optimization mode for industrial load management. IEEE Transactions on Power Systems, 16(4), 879–884. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=962440.

  • Ashok, S., & Banerjee, R. (2003b). Optimal operation of industrial cogeneration for load management. IEEE Transactions on Power Systems, 18(2), 931–937.

    Article  Google Scholar 

  • Ashok, S., & Banerjee, R. (2003a). Optimal cool storage capacity for load management. Energy, 28(2), 115–126.

    Article  Google Scholar 

  • Babu, C., & Ashok, S. (2008). Peak load management in electrolytic process industries. IEEE Transactions on Power Systems, 23(2), 399–405. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4484953.

  • Babu, C., & Ashok, S. (2009). Optimal utilization of renewable energy-based IPPs for industrial load management. Renew Energy, 34(11), 2455–2460. http://linkinghub.elsevier.com/retrieve/pii/S0960148109001013.

  • Balogun, V. A., & Mativenga, P. T. (2013). Modelling of direct energy requirements in mechanical machining processes. Journal of Cleaner Production, 41, 179–186. http://linkinghub.elsevier.com/retrieve/pii/S0959652612005471.

  • Bego, A., Li, L., & Sun, Z. (2014). Identification of reservation capacity in critical peak pricing electricity demand response program for sustainable manufacturing systems. International Journal of Energy Research, 38(6), 728–736. http://onlinelibrary.wiley.com/doi/10.1002/er.3077/full.

  • Beier, J., Thiede, S., & Herrmann, C. (2015). Increasing energy flexibility of manufacturing systems through flexible compressed air generation. Procedia CIRP, 37, 18–23.

    Article  Google Scholar 

  • Beier, J., Thiede, S., & Herrmann, C. (2017). Energy flexibility of manufacturing systems for variable renewable energy supply integration: real-time control concept and simulation. Journal of Cleaner Production, 141, 648–661.

    Google Scholar 

  • Bougain, S., Gerhard, D., Nigischer, C., & Ugurlu, S. (2015). Towards energy management in production planning software based on energy consumption as a planning resource. Procedia CIRP, 26, 139–144. http://www.sciencedirect.com/science/article/pii/S2212827114009068.

  • Braun, J. E. (2003). Load control using building thermal mass. Journal of Solar Energy Engineering, 125(3), 292–301.

    Article  Google Scholar 

  • Brundage, M. P., Chang, Q., Li, Y., Arinez, J., & Xiao, G. (2014). Utilizing energy opportunity windows and energy profit bottlenecks to reduce energy consumption per part for a serial production line. In 2014 IEEE International Conference on Automation Science and Engineering (pp. 461–466), Taipei.

    Google Scholar 

  • Bruzzone, A. A. G., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals Manufacturing Technology, 61, 459–462. doi:10.1016/j.cirp.2012.03.084.

    Article  Google Scholar 

  • Castro, P. M., Harjunkoski, I., & Grossmann, I. E. (2009). New continuous-time scheduling formulation for continuous plants under variable electricity cost. Industrial and Engineering Chemistry Research, 48(14), 6701–6714. http://pubs.acs.org/doi/abs/10.1021/ie900073k.

  • Castro, P. M., Harjunkoski, I., & Grossmann, I. E. (2011). Optimal scheduling of continuous plants with energy constraints. Computers and Chemical Engineering, 35(2), 372–387. http://linkinghub.elsevier.com/retrieve/pii/S0098135410001687.

  • Central Electricity Authority. (2014). Load Generation Balance Report 2014–15. Technical report, Central Electricity Authority, New Delhi.

    Google Scholar 

  • Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robot Computer Integrated Manufacturing, 29(5), 418–429.

    Article  Google Scholar 

  • Daryanian, B., Bohn, R. E., & Tabors, R. D. (1989). Optimal demand-side response to electricity spot prices for storage-type customers. IEEE Transactions on Power Systems, 4(3), 897–903. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4310873.

  • Diaz, N., Ninomiya, K., Noble, J., & Dornfeld, D. (2012). Environmental impact characterization of milling and implications for potential energy savings in industry. Procedia CIRP, 1, 518–523. http://linkinghub.elsevier.com/retrieve/pii/S2212827112000935.

  • Eberspächer, P., Schraml, P., Schlechtendahl, J., Verl, A., & Abele, E. (2014). A model- and signal-based power consumption monitoring concept for energetic optimization of machine tools. Procedia CIRP, 15, 44–49. doi:10.1016/j.procir.2014.06.020.

    Article  Google Scholar 

  • Emec, S., Kuschke, M., Huber, F. W., Stephan, R., Strunz, K., & Seliger, G. (2013). Stochastic optimization method to schedule production steps according to volatile energy price. In G. Seliger (Ed.), GCSM 11th global conference on sustainable manufacturing (pp. 637–642). Berlin: Springer.

    Google Scholar 

  • Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–240. http://linkinghub.elsevier.com/retrieve/pii/S0278612511000690.

  • Feder, F., Erlach, K., Hosak, F., & Lepple, H. (2015). Der energieflexible und effiziente Energiewertstrom. wt Werkstattstech online, 105(5), 313–318.

    Google Scholar 

  • Fernandez, M., Li, L., & Sun, Z. (2013). “Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems. International Journal of Production Economics, 146(1), 178–184.

    Article  Google Scholar 

  • Finn, P., & Fitzpatrick, C. (2014). Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing. Applied Energy, 113, 11–21. doi:10.1016/j.apenergy.2013.07.003.

    Article  Google Scholar 

  • Finn, P., O’Connell, M., & Fitzpatrick, C. (2013). Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction. Applied Energy, 101, 678–685. doi:10.1016/j.apenergy.2012.07.004.

    Article  Google Scholar 

  • FOREnergy (2015). FOREnergy: Die energieflexible Fabrik. Retrieved August 13, 2015, from http://www.forenergy.de/.

  • Gerhard, D. (2015). Integrated systems: innovations and applications. In M. Fathi (Ed.), Integrated systems innovations applied (pp. 29–38). Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Ghadimi, P., Kara, S., & Kornfeld, B. (2015). Renewable energy integration into factories: Real-time control of on-site energy systems. CIRP Annals Manufacturing Technology, 64(1), 443–446.

    Article  Google Scholar 

  • Ghadimi, P., Li, W., Kara, S., & Herrmann, C. (2014). Integrated material and energy flow analysis towards energy efficient manufacturing. Procedia CIRP, 15, 117–122. doi:10.1016/j.procir.2014.06.010.

    Article  Google Scholar 

  • Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37(1), 126–140.

    Article  Google Scholar 

  • Graßl, M. (2015). Bewertung der Energieflexibilität in der Produktion. München: Herbert Utz.

    Google Scholar 

  • Graßl, M., & Reinhart, G. (2014). Evaluating measures for adapting the energy demand of a production system to volatile energy prices. Procedia CIRP, 15, 129–134.

    Article  Google Scholar 

  • Graßl, M., Vikdahl, E., & Reinhart, G. (2013). A petri-net based approach for evaluating energy flexibility of production machines. In M. Zäh (Ed.), 5th international conference on chang agil reconfigurable virtual production (CARV 2013) (pp. 303–308). Switzerland, Munich: Springer International Publishing.

    Google Scholar 

  • Grismajer, M., & Seliger, G. (2012). Information requirements for motivated alignment of manufacturing operations to energy availability. Procedia CIRP, 3(1), 418–423. doi:10.1016/j.procir.2012.07.072.

    Article  Google Scholar 

  • Gutowski, T. G., Dahmus, J., & Thiriez, A. (2006). Electrical energy requirements for manufacturing processes. In 13th CIRP International Conference on Life Cycle Engineering (pp. 623–627), Lueven.

    Google Scholar 

  • Ha, D. L., Joumaa, H., Ploix, S., & Jacomino, M. (2012). An optimal approach for electrical management problem in dwellings. Energy Build, 45, 1–14. doi:10.1016/j.enbuild.2011.11.027.

    Article  Google Scholar 

  • Heinemann, T., Schraml, P., Thiede, S., Eisele, C., Herrmann, C., & Abele, E. (2014). Hierarchical evaluation of environmental impacts from manufacturing system and machine perspective. Procedia CIRP, 15, 141–146. doi:10.1016/j.procir.2014.06.063.

    Article  Google Scholar 

  • Jang, D., Eom, J., Kim, M. G., & Rho, J. J. (2015). Demand responses of Korean commercial and industrial businesses to critical peak pricing of electricity. Journal of Cleaner Production, 90, 275–290. http://linkinghub.elsevier.com/retrieve/pii/S0959652614012396.

  • Junge, M. (2007). Simulationsgestützte Entwicklung und Optimierung einer energieeffizienten Produktionssteuerung. Kassel University Press GmbH, Kassel.

    Google Scholar 

  • Kara, S., & Li, W. (2011). Unit process energy consumption models for material removal processes. CIRP Annals Manufacturing Technology, 60(1), 37–40. http://linkinghub.elsevier.com/retrieve/pii/S0007850611000199.

  • Keller, F., & Reinhart, G. (2015). Produktionsplanung unter Berücksichtigung des Energiebezugs. wt Werkstattstech online, 105(3), 141–147.

    Google Scholar 

  • Keller, F., Schönborn, C., & Reinhart, G. (2015). Energy-orientated machine scheduling for hybrid flow shops. Procedia CIRP, 29, 156–161.

    Article  Google Scholar 

  • Kwag, H. G., & Kim, J. O. (2012). Optimal combined scheduling of generation and demand response with demand resource constraints. Applied Energy, 96, 161–170. doi:10.1016/j.apenergy.2011.12.075.

    Article  Google Scholar 

  • Langer, T., Schlegel, A., Stoldt, J., & Putz, M. (2014). A model-based approach to energy-saving manufacturing control strategies. Procedia CIRP, 15, 123–128. doi:10.1016/j.procir.2014.06.019.

    Article  Google Scholar 

  • Li, L., Chang, Q., & Ni, J. (2009). Data driven bottleneck detection of manufacturing systems. International Journal of Production Research, 47(18), 5019–5036.

    Article  MATH  Google Scholar 

  • Li, W., & Kara, S. (2011). An empirical model for predicting energy consumption of manufacturing processes: A case of turning process. Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacturing, 225(9), 1636–1646.

    Article  Google Scholar 

  • Li, L., Sun, Z., & Tang, Z. (2012a). Real time electricity demand response for sustainable manufacturing systems: challenges and a case study. In 8th IEEE International Conference Automation Science and Engineering (pp. 353–357), Seoul. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386437.

  • Li, L., Sun, Z., Yang, H., Gu, F., & (2012b). Simulation-based energy efficiency improvement for sustainable manufacturing systems. In Proceedings of ASME (2012) International Manufacturing Science and Engineering Conference MSEC2012 (pp. 1033–1039). IN: Notre Dame.

    Google Scholar 

  • Li, W., Winter, M., Kara, S., & Herrmann, C. (2012c). Eco-efficiency of manufacturing processes: A grinding case. CIRP Annals Manufacturing Technology, 61(1), 59–62. http://linkinghub.elsevier.com/retrieve/pii/S0007850612000315.

  • Li, L., & Sun, Z. (2013). Dynamic energy control for energy efficiency improvement of sustainable manufacturing systems using markov decision process. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(5), 1195–1205. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6519950.

  • Li, L., Yan, J., & Xing, Z. (2013). Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling. Journal of Cleaner Production, 52, 113–121. http://linkinghub.elsevier.com/retrieve/pii/S0959652613001418.

  • Liebl, C., & Zäh, M. F. (2014). Energiebedarfssimulation von Produktionsanlagen. wt Werkstattstech online, 104(5), 325–329.

    Google Scholar 

  • Liebl, C., Popp, R., & Zäh, M. F. (2015). Energieflexibilität von Produktionsanlagen. wt Werkstattstech online, 105(3), 136–140.

    Google Scholar 

  • Liu, X., Zou, F., & Zhang, X. (2008). Mathematical model and genetic optimization for hybrid flow shop scheduling problem based on energy consumption. In 2008 Chinese Control and Decision Conference (pp. 1002–1007). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4597463.

  • Liu, N., Zhang, Y., & Lu, W. (2015). A hybrid approach to energy consumption modelling based on cutting power: a milling case. Journal of Cleaner Production, 104, 264–272. http://linkinghub.elsevier.com/retrieve/pii/S095965261500596X.

  • Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423–439. doi:10.1016/j.ijpe.2013.01.028.

    Article  Google Scholar 

  • Middelberg, A., Zhang, J., & Xia, X. (2009). An optimal control model for load shifting - With application in the energy management of a colliery. Applied Energy, 86, 1266–1273.

    Article  Google Scholar 

  • Mitra, S., Grossmann, I. E., Pinto, J. M., & Arora, N. (2012). Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes. Computers and Chemical Engineering, 38, 171–184. http://linkinghub.elsevier.com/retrieve/pii/S0098135411003012.

  • Mitra, S., Sun, L., & Grossmann, I. E. (2013). Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices. Energy, 54, 194–211. http://linkinghub.elsevier.com/retrieve/pii/S0360544213001448.

  • Mohan, L., & Ashok, S. (2011). PLC based peak load control for chemical industries. World Journal of Engineering, 8(1), 35–44.

    Article  Google Scholar 

  • Neugebauer, R., Putz, M., Schlegel, A., Langer, T., Franz, E., & Lorenz, S. (2012). Energy-sensitive production control in mixed model manufacturing processes. In 19th CIRP International Conference Life Cycle Engineering (pp. 399–404), Berkeley.

    Google Scholar 

  • Nilsson, K. (1992). Industrial production planning with optimal electricity cost. Energy Conversion and Management, 34(3), 153–158.

    Article  Google Scholar 

  • Nilsson, K., & Söderström, M. (1993). Industrial applications of production planning with optimal electricity demand. Applied Energy, 46(2), 181–192.

    Article  Google Scholar 

  • Outhred, H., Bannister, C., Kaye, R., Lee, Y., Sutanto, D., & Manimaran, R. (1988). Electricity pricing: Optimal operation and investment by industrial consumers. Energy Policy, 16(4), 384–393.

    Article  Google Scholar 

  • Paulus, M., & Borggrefe, F. (2011). The potential of demand-side management in energy-intensive industries for electricity markets in Germany. Applied Energy, 88(2), 432–441.

    Article  Google Scholar 

  • Pechmann, A. & Schöler, I. (2011). Optimizing energy costs by intelligent production scheduling. In Proceedings of the 18th CIRP International Conference of Life Cycle Engineering (pp. 293–298), Braunschweig.

    Google Scholar 

  • Popp, R., Keller, F., Atabay, D., Dornmair, R., Buderus, J., & Kohl, J. (2013). Technische Innovationen für die Energieflexible Fabrik. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr, 108(07–08), 556–560.

    Google Scholar 

  • Popp, R., & Zäh, M. F. (2014). Steuerung des Energiebedarfs von Werkzeugmaschinen. wt Werkstattstech online, 104(6), 413–417.

    Google Scholar 

  • Posselt, G. (2016). Towards energy transparent factories. Cham: Springer International Publishing.

    Book  Google Scholar 

  • Rager, M. (2008). Energieorientierte Produktionsplanung: Analyse, Konzeption und Umsetzung (Gabler ed.). Wiesbaden: Wissenschaft.

    Google Scholar 

  • Rankin, R., & Rousseau, P. (2008). Demand side management in South Africa at industrial residence water heating systems using in line water heating methodology. Energy Conversion and Management, 49(1), 62–74.

    Article  Google Scholar 

  • Reinhart, G. & Graßl, M. (2013). Energieflexible Fabriken: Maßnahmen zur Steuerung des Energiebedarfs von Fabriken. In VDI-Expertenforum Energiemanagement - Wie “smart” managen wir Energie wirklich?, Karlsruhe. Verein Deutscher Ingenieure -VDI-, Düsseldorf. https://www.vdi.de/fileadmin/vdi_de/news_bilder/News_GEU/Grassl_1_.pdf.

  • Reinhart, G., Graßl, M., & Datzmann, S. (2014). Methode zur Bewertung der Energieflexibilität. wt Werkstattstech online, 104(5), 313–319.

    Google Scholar 

  • Reinhart, G., Reinhardt, S., & Graßl, M. (2012). Energieflexible Produktionssysteme. wt Werkstattstech online, 102(9), 622–628.

    Google Scholar 

  • Reinhart, G., & Schultz, C. (2014). Herausforderungen einer energieorientierten Produktionssteuerung. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr, 109(1–2), 29–33.

    Google Scholar 

  • Reynders, G., Nuytten, T., & Saelens, D. (2013). Potential of structural thermal mass for demand-side management in dwellings. Building and Environment, 64, 187–199.

    Article  Google Scholar 

  • Schlechtendahl, J., Eberspächer, P., Schraml, P., Verl, A., & Abele, E. (2016). Multi-level energy demand optimizer system for machine tool controls. Procedia CIRP, 41, 783–788. doi:10.1016/j.procir.2015.12.030.

    Article  Google Scholar 

  • Schultz, C., Braunreuther, S., & Reinhart, G. (2015a). Integration von Lastmanagementstrategien in die Produktionssteuerung. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr, 110(11), 675–680.

    Google Scholar 

  • Schultz, C., Keller, F., & Reinhart, G. (2014). Modellierung einer energieorientierten PPS. wt Werkstattstech online, 104(11/12), 771–775.

    Google Scholar 

  • Schultz, C., Keller, F., Simon, P., Reinhart, G., Dornmair, R., & Wagner, U. (2015b). Wirtschaftlicher Einsatz von Energieflexibilität als Lösungsbaustein der Energiewende. ZWF Zeitschrift für wirtschaftlichen Fabrikbetr, 110(7–8), 416–420.

    Google Scholar 

  • Schultz, C., Sellmaier, P., & Reinhart, G. (2015c). An approach for energy-oriented production control using energy flexibility. Procedia CIRP, 29, 197–202.

    Article  Google Scholar 

  • Sharma, A., Zhao, F., & Sutherland, J. W. (2015). Econological scheduling of a manufacturing enterprise operating under a time-of-use electricity tariff. Journal of Cleaner Production, 108, 256–270. http://www.sciencedirect.com/science/article/pii/S095965261500712X.

  • Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197–207. http://linkinghub.elsevier.com/retrieve/pii/S0959652613008780.

  • Sun, Z., & Li, L. (2013). Opportunity estimation for real-time energy control of sustainable manufacturing systems. IEEE Transactions on Automatic Science and Engineering, 10(1), 38–44. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6329376.

  • Sun, Z., & Li, L. (2014). Potential capability estimation for real time electricity demand response of sustainable manufacturing systems using Markov Decision Process. Journal of Cleaner Production, 65, 184–193. http://linkinghub.elsevier.com/retrieve/pii/S0959652613005738.

  • Sun, Z., Li, L., Bego, A., & Dababneh, F. (2015). Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system. International Journal of Production Economics, 165, 112–119. http://linkinghub.elsevier.com/retrieve/pii/S0925527315001176.

  • Sun, Z., Li, L., Fernandez, M., & Wang, J. (2014). Inventory control for peak electricity demand reduction of manufacturing systems considering the tradeoff between production loss and energy savings. Journal of Cleaner Production, 82, 84–93.

    Article  Google Scholar 

  • Thiede, S. (2012). Energy efficiency in manufacturing systems. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • van Staden, A. J., Zhang, J., & Xia, X. (2011). A model predictive control strategy for load shifting in a water pumping scheme with maximum demand charges. Applied Energy, 88(12), 4785–4794. http://linkinghub.elsevier.com/retrieve/pii/S0306261911004442.

  • Velchev, S., Kolev, I., Ivanov, K., & Gechevski, S. (2014). Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. Journal of Cleaner Production, 80, 139–149. http://linkinghub.elsevier.com/retrieve/pii/S0959652614005903.

  • Wang, X., Ding, H., Qiu, M., & Dong, J. (2011). A low-carbon production scheduling system considering renewable energy. In Proceedings of 2011 IEEE International Conference on Service Operations, Logistics and Informatics, SOLI 2011 (pp. 101–106).

    Google Scholar 

  • Wang, Y., & Li, L. (2013). Time-of-use based electricity demand response for sustainable manufacturing systems. Energy, 63, 233–244. http://linkinghub.elsevier.com/retrieve/pii/S036054421300844X.

  • Weinert, N. (2010). Vorgehensweise für Planung und Betrieb energieeffizienter Produktionssysteme. Stuttgart: Fraunhofer.

    Google Scholar 

  • Weinert, N., Chiotellis, S., & Seliger, G. (2011). Methodology for planning and operating energy-efficient production systems. CIRP Annals Manufacturing Technology, 60(1), 41–44. http://linkinghub.elsevier.com/retrieve/pii/S0007850611000163.

  • Yusta, J., Torres, F., & Khodr, H. (2010). Optimal methodology for a machining process scheduling in spot electricity markets. Energy Conversion and Management, 51(12), 2647–2654. http://linkinghub.elsevier.com/retrieve/pii/S0196890410002098.

  • Zein, A. (2012). Transition towards energy efficient machine tools. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Zhou, Z., & Li, L. (2013). Real time electricity demand response for sustainable manufacturing systems considering throughput bottleneck detection. IEEE International Conference on Automation Science and Engineering (pp. 640–644), Madison.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Beier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beier, J. (2017). Existing Approaches in the Field of Energy Flexible Manufacturing Systems. In: Simulation Approach Towards Energy Flexible Manufacturing Systems. Sustainable Production, Life Cycle Engineering and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-46639-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46639-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46638-5

  • Online ISBN: 978-3-319-46639-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics