Skip to main content

Results and Discussion

  • Chapter
  • First Online:
  • 764 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The main topical complex of the thesis is the energy-level alignment at HIOS interfaces comprising ZnO. In particular it is investigated how one can modify HIOS energy-level alignment by introducing thin donor/acceptor interlayers. For details on this working principle consult to the introduction or Sect. 5.2.

God made solids, but surfaces were the work of the Devil.

—Wolfgang Pauli

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Standardly samples were sputtered with 0.5 keV Ar ions for 40 min, annealed to 400 \(^{\circ }\mathrm{C}\) for 1 h (including ramping up and down) and 10L O\(_\mathrm{{2}}\) were dosed at 400 \(^{\circ }\mathrm{C}\) (for details of the preparation see Sect. 4.1.1.1).

  2. 2.

    Meaning that \(E_\mathrm {ph}\simeq \) 615 eV and measurements using Al K\(\upalpha \) or Mg K\(\upalpha \) radiation are excluded.

  3. 3.

    The particularly large scatter in the datapoints of the width of the surface oxygen peak (Fig. 5.3d), is in part due to instability of the fit.

  4. 4.

    In a simple ansatz, which is similar to the concept of the Madelung constant, one assumes O1s emission to be emitted point-like at the lattice sites. IMFP of adlayer and bulk are presumed to be the same and the adlayer thickness set to 1.95 Å (one Zn–O bondlength). Furthermore, one sums up the intensity of oxygens from different depths corresponding with regularly spaced lattice planes but weighted by the attenuation according to \(\lambda =5.3\) Å. For a 1 \(\times \) 1 adlayer on ZnO(10\(\bar{1}\)0) such methodology (lattice plane spacings 0.9 and 1.9 Å)

    $$\begin{aligned} \left[ 1/\sum \limits _\mathrm {i=1}^\infty \left( e^{-(i\cdot 2.8{\AA }+1.95{\AA })/5.3{\AA }} + e^{-(0.9{\AA }+i\cdot 2.8{\AA }+1.95{\AA })/5.3{\AA }}\right) \right] \end{aligned}$$

    yields an expected OH/bulk oxygen peak area ratio of 0.4. Comparison with Fig. 5.3a thus advises an actual coverage on ZnO(10\(\bar{1}\)0) of one adsorbant per surface unit cell.

  5. 5.

    Equation (5.2) explicitly depends as \(1/N_\mathrm {D}\). But for every change of \(N_\mathrm {D}\), implicitly also \(\delta q\) must be changed to match \(\varDelta \phi ^{BB}+\varDelta \phi ^{ID}=\varDelta \phi \) (see Appendix A).

  6. 6.

    Note that actually two different n doping species, one of which must not be shallow, could also resolve the issue.

  7. 7.

    Note that the 1/\(N_\mathrm {D}\) dependence is only an approximation, since in principle \(N_\mathrm {D}\) also influences the amount of charge transfer \(\delta q\) itself and by this also the \(\varDelta \phi ^{ID}\) part. The correct numerical solution \(\delta q(N_\mathrm {D})\) for \(\varDelta \phi ={2.8}\) eV is shown in Fig. 5.12.

  8. 8.

    In Schottky-depletion-layer approximation all donors are ionized.

  9. 9.

    Note that Fig. 5.12 is calculated for the 2.8 eV total \(\varDelta \phi \) on ZnO(0001). On ZnO(000\(\bar{1}\)), where \(\varDelta \phi ={1.4}\) eV, the extend of the space charge region and the amount of charge transfer are \({\sim }\sqrt{2}\) smaller, since \(\varDelta \phi ^{BB}\propto \delta q^2\). For \(\varDelta \phi ^{ID}\) this means that it is \({\sim }\sqrt{2}\) enhanced. This does not change the general consideration that if using highly doped ZnO crystals the band bending contribution should be significantly reduced.

  10. 10.

    E.g., from Aldrich.

  11. 11.

    In the C K-edge region TEY currents are particularly low due to carbon contaminations on the optical parts of the beamline.

  12. 12.

    All NEXAFS spectra of this thesis have been referenced in energy to a single carbon and nitrogen mirror current signal. To compare absolute NEXAFS peak positions of this work with externally reported data one should mind a constant difference in photon energy due to different references.

  13. 13.

    Since the parameter space of the fit is too large for only three angles recorded.

  14. 14.

    The discrepancy of the band bending as evidenced by Figs. 5.20 and 5.21a is due to light induced energy level differences between UPS and XPS spot.

  15. 15.

    It should be mentioned that one can also fit the O1s spectra (lesser spacing) in the adsorbed state with a shape representative of the bare O1s spectra and an additional peak. In order to decide whether this is indeed physically meaningful much better statistics are necessary and preferably even narrower lineshapes. Until then, the fitting problem is underdetermined and the occurrence of an adsorption induced third O1s core level peak must be considered speculation.

  16. 16.

    Here not the depletion approximation was used, but rather correct Fermi-Dirac occupation statistics applied to a continuum band bending model. This is because at \(\varDelta \phi ^{BB}_\infty ={0.3}\) eV the region, where the depletion approximation is good, is only \(\thicksim \)20 nm large, but the space charge, i.e., the non neutral region, is distributed \(\thicksim \)100 nm inside the crystal. The Mathematica code implemented for this more elaborate calculation is listed in Appendix E.

  17. 17.

    Assuming the intra ZnO charge density to be uniformly distributed 1 nm deep inside the crystal and all 0.6 transferred electrons to reside on nitrogens only.

  18. 18.

    There exist some uncertainty of the core level positions due to UV irradiation related energy-level shifts within ZnO (see Fig. F.4) and screening effects due to the extra charge density at the surface. However, this does not change the general fact that \(\varDelta \phi \gg \varDelta \phi ^{BB}\).

  19. 19.

    Note that for HATCN the band bending as determined by XPS (O1s and Zn3p shift) and UPS (shift of the Zn3d derived band) differ by up to 0.4 eV, which is probably related to the UV-induced energy level shifts within ZnO [49].

References

  1. Tasker, P. W. (1979). The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 12, 4977.

    Article  ADS  Google Scholar 

  2. Wöll, C. (2007). The chemistry and physics of zinc oxide surfaces. Progress in Surface Science, 82, 55–120.

    Article  ADS  Google Scholar 

  3. Pugel, E. D., Vispute, R., Hullavarad, S., Venkatesan, T., & Varughese, B. (2008). Compositional origin of surface roughness variations in air-annealed ZnO single crystals. Applied Surface Science, 254, 2220–2223.

    Google Scholar 

  4. Xu, Q., et al. (2013). Effect of rapid thermal annealing on Zn/ZnO layers. Journal of Materials Science: Materials in Electronics, 24, 4075–4079.

    Google Scholar 

  5. Ko, H.-J., et al. (2004). Improvement of the quality of ZnO substrates by annealing. Journal of Crystal Growth, 269, 493–498.

    Article  ADS  Google Scholar 

  6. Zapol, P., Jaffe, J. B., & Hess, A. C. (1999). Ab initio study of hydrogen adsorption on the ZnO surface. Surface Science, 422, 1–7.

    Article  ADS  Google Scholar 

  7. Hussain, G., & Sheppard, N. (1990). A Fourier-transform spectral-ratioed reinvestigation of the infrared spectra from H2 and D2 adsorbed on ZnO at room temperature and at 160 \(^{\circ }\)C. Journal of the Chemical Society, Faraday Transactions, 86, 1615–1617.

    Article  Google Scholar 

  8. Tsyganenko, A. A., Lamotte, J., Saussey, J., & Lavalley, J. C. (1989). Bending vibrations of OH groups resulting from H2 dissociation on ZnO. Journal of the Chemical Society, Faraday Transactions, 1(85), 2397.

    Google Scholar 

  9. Wang, Y., et al. (2005). Hydrogen induced metallicity on the ZnO(10\(\bar{1}\)0) surface. Physical Review Letters, 95, 266104.

    Article  ADS  Google Scholar 

  10. Coppa, B. J. (2004). In situ cleaning and characterization of oxygen- and zinc-terminated, n-type, ZnO0001 surfaces. Journal of Applied Physics, 95, 5856.

    Article  ADS  Google Scholar 

  11. Becker, T., et al. (2001). Interaction of hydrogen with metal oxides: The case of the polar ZnO(0001) surface. Surface Science, 486, L502–L506.

    Article  ADS  Google Scholar 

  12. Dulub, O., Meyer, B., & Diebold, U. (2005). Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Physical Review Letters, 95, 136101.

    Article  ADS  Google Scholar 

  13. Cooke, D. J., Marmier, A., & Parker, S. C. (2006). Surface structure of (10\(\bar{1}\)0) and (11\(\bar{2}\)0) surfaces of ZnO with density functional theory and atomistic simulation. The Journal of Physical Chemistry B, 110, 7985–7991.

    Article  ADS  Google Scholar 

  14. Chevtchenko, S. A., et al. (2006). Comparative study of the (0001) and (000\(\bar{1}\)) surfaces of ZnO. Applied Physics Letters, 89.

    Google Scholar 

  15. Ozawa, K., & Mase, K. (2011). Comparison of the surface electronic structures of H-adsorbed ZnO surfaces: An angle-resolved photoelectron spectroscopy study. Physical Review B, 83, 125406.

    Article  ADS  Google Scholar 

  16. Kresse, G., Dulub, O., & Diebold, U. (2003). Competing stabilization mechanism for the polar ZnO(0001)-Zn surface. Physical Review B, 68, 245409.

    Article  ADS  Google Scholar 

  17. Traeger, F., Kauer, M., Wöll, C., Rogalla, D., & Becker, H.-W. (2011). Analysis of surface, subsurface, and bulk hydrogen in ZnO using nuclear reaction analysis. Physical Review B, 84, 075462.

    Article  ADS  Google Scholar 

  18. Abedi, N., & Heimel, G. (2015). Correlating core-level shifts and structure of zinc-oxide surfaces. Physica Status Solidi (B), 252, 755–764.

    Google Scholar 

  19. Herrmann, P., & Heimel, G. (2015). Structure and stoichiometry prediction of surfaces reacting with multicomponent gases. Advanced Materials, 27, 255–260.

    Article  Google Scholar 

  20. Zhang, L., Wett, D., Szargan, R., & Chassé, T. (2004). Determination of ZnO(0001) surface termination by X-ray photoelectron spectroscopy at photoemission angles of 0\(^{\circ }\) and 70\(^{\circ }\). Surface and Interface Analysis, 36, 1479–1483.

    Article  Google Scholar 

  21. Major, S., Kumar, S., Bhatnagar, M., & Chopra, K. L. (1986). Effect of hydrogen plasma treatment on transparent conducting oxides. Applied Physics Letters, 49, 394.

    Article  ADS  Google Scholar 

  22. Min, C.-H., et al. (2010). Effect of oxygen partial pressure on the Fermi level of ZnO1-x films fabricated by pulsed laser deposition. Applied Physics Letters, 96.

    Google Scholar 

  23. Carlsson, J. M. (2001). Electronic structure of the polar ZnO(0001)-surfaces. Computational Materials Science, 22, 24–31.

    Article  Google Scholar 

  24. Meyer, B. (2004). First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Physical Review B, 69, 045416.

    Article  ADS  Google Scholar 

  25. Coppa, B. J., Davis, R. F., & Nemanich, R. J. (2003). Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000\(\bar{1}\)). Applied Physics Letters, 82, 400.

    Article  ADS  Google Scholar 

  26. Crook, S., Dhariwal, H., & Thornton, G. (1997). HREELS study of the interaction of formic acid with ZnO(10\(\bar{1}\)0) and ZnO(000\(\bar{1}\))-O. Surface Science, 382, 19–25.

    Article  ADS  Google Scholar 

  27. Noei, H., Qiu, H., Wang, Y., Muhler, M., & Wöll, C. (2010). Hydrogen loading of oxide powder particles: A transmission IR study for the case of zinc oxide. ChemPhysChem, 11, 3604–3607.

    Article  Google Scholar 

  28. Huang, J., Yin, Z., & Zheng, Q. (2011). Applications of ZnO in organic and hybrid solar cells. Energy & Environmental Science, 4, 3861–3877.

    Article  Google Scholar 

  29. Boccuzzi, F., Morterra, C., Scala, R., & Zecchina, A. (1981). Infrared spectrum of microcrystalline zinc oxide. Electronic and vibrational contributions under different temperature and environmental conditions. Journal of the Chemical Society, Faraday Transactions, 2(77), 2059.

    Google Scholar 

  30. Batyrev, E. D., & van den Heuvel, J. C. (2011). Modification of the ZnO(0001)-Zn surface under reducing conditions. Physical Chemistry Chemical Physics, 13, 13127–13134.

    Google Scholar 

  31. Dulub, O., Diebold, U., & Kresse, G. (2003). Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Physical Review Letters, 90, 016102.

    Article  ADS  Google Scholar 

  32. King, S., Parihar, S., Pradhan, K., Johnson-Steigelman, H., & Lyman, P. (2008). Observation of a (p3 \(\times \) p3)R30\(^{\circ }\) reconstruction on O-polar ZnO surfaces. Surface Science, 602, L131–L134.

    Article  ADS  Google Scholar 

  33. Diebold, U., Li, S.-C., & Schmid, M. (2010). Oxide surface science. Annual Review of Physical Chemistry, 61, 129–148.

    Article  Google Scholar 

  34. Heiland, G., & Kunstmann, P. (1969). Polar surfaces of zinc oxide crystals. Surface Science, 13, 72–84.

    Article  ADS  Google Scholar 

  35. Valtiner, M., Borodin, S., & Grundmeier, G. (2007). Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces. Physical Chemistry Chemical Physics, 9, 2406–2412.

    Article  Google Scholar 

  36. Hövel, S., et al. (2000). Pyridine adsorption on the polar ZnO(0001) surface: Zn termination versus O termination. The Journal of Chemical Physics, 112, 3909.

    Article  ADS  Google Scholar 

  37. Vehse, W. E., Sibley, W. A., Keller, F. J., & Chen, Y. (1968). Radiation damage in ZnO single crystals. Physical Review, 167, 828–836.

    Article  ADS  Google Scholar 

  38. Prasada Rao, T. (2012). Resistivity stability of Ga doped ZnO thin films with heat treatment in air and oxygen atmospheres. Journal of Crystallization Process and Technology, 02, 72–79.

    Google Scholar 

  39. Önsten, A., et al. (2013). SO2 interaction with Zn(0001) and ZnO(0001) and the influence of water. Surface Science, 608, 31–43.

    Article  ADS  Google Scholar 

  40. Lahiri, J., Senanayake, S., & Batzill, M. (2008). Soft X-ray photoemission of clean and sulfurcovered polar ZnO surfaces: A view of the stabilization of polar oxide surfaces. Physical Review B, 78, 155414.

    Article  ADS  Google Scholar 

  41. Kunat, M., Gil Girol, S., Becker, T., Burghaus, U., & Wöll, C. (2002). Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering. Physical Review B, 66, 081402.

    Google Scholar 

  42. Torbrügge, S., Ostendorf, F., & Reichling, M. (2009). Stabilization of zinc-terminated ZnO(0001) by a modified surface stoichiometry. The Journal of Physical Chemistry C, 113, 4909–4914.

    Article  Google Scholar 

  43. Dulub, O., Boatner, L. A., & Diebold, U. (2002). STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000\(\bar{1}\))-O, (10\(\bar{1}\)0), and (11\(\bar{2}\)0) surfaces. Surface Science, 519, 201–217.

    Article  ADS  Google Scholar 

  44. Valtiner, M., Todorova, M., Grundmeier, G., & Neugebauer, J. (2009). Temperature stabilized surface reconstructions at polar ZnO(0001). Physical Review Letters, 103, 065502.

    Article  ADS  Google Scholar 

  45. Zhang, R., Ludviksson, A., & Campbell, C. T. (1993). The chemisorption of H\(_2\)O and O\(_2\) on Cu films on ZnO(0001)-O. Surface Science, 289, 1–9.

    Article  ADS  Google Scholar 

  46. Eischens, R. P., Pliskin, W. A., & Low, M. J. D. (1962). The infrared spectrum of hydrogen chemisorbed on zinc oxide. Journal of Catalysis, 1, 180–191.

    Article  Google Scholar 

  47. King, P. D. C., et al. (2009). Valence-band electronic structure of CdO, ZnO, and MgO from X-ray photoemission spectroscopy and quasi-particle-corrected density-functional theory calculations. Physical Review B, 79, 205205.

    Article  ADS  Google Scholar 

  48. Moormann, H., Kohl, D., & Heiland, G. (1980). Variations of work function and surface conductivity on clean cleaved zinc oxide surfaces by annealing and by hydrogen adsorption. Surface Science, 100, 302–314.

    Article  ADS  Google Scholar 

  49. Jacobi, K., Zwicker, G., & Gutmann, A. (1984). Work function, electron affinity and band bending of zinc oxide surfaces. Surface Science, 141, 109–125.

    Article  ADS  Google Scholar 

  50. Islam, M. N., Ghosh, T., Chopra, K., & Acharya, H. (1996). XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films, 280, 20–25.

    Article  ADS  Google Scholar 

  51. Chen, M., et al. (2000). X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science, 158, 134–140.

    Article  ADS  Google Scholar 

  52. Lindsay, R., Muryn, C. A., Michelangeli, E., & Thornton, G. (2004). ZnO-O surface structure: Hydrogen-free (1 \(\times \) 1) termination. Surface Science, 565, L283–L287.

    Article  ADS  Google Scholar 

  53. Lauks, I., & Green, M. (1978). Preparation of clean 10\(\bar{1}\)0 ZnO surfaces. Surface Science, 71, 735–740.

    Article  ADS  Google Scholar 

  54. Anderson, A. B., & Nichols, J. A. (1986). Hydrogen on zinc oxide. Theory of its heterolytic adsorption. Journal of the American Chemical Society, 108, 4742–4746.

    Article  Google Scholar 

  55. Schlesinger, R., et al. (2013). Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Physical Review B, 87, 155311.

    Article  ADS  Google Scholar 

  56. Hsieh, P.-T., Chen, Y.-C., Kao, K.-S., & Wang, C.-M. (2008). Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A, 90, 317–321.

    Article  Google Scholar 

  57. Wang, Z., Zu, X., Zhu, S., & Wang, L. (2006). Green luminescence originates from surface defects in ZnO nanoparticles. Physica E: Low-dimensional Systems and Nanostructures, 35, 199–202.

    Article  ADS  Google Scholar 

  58. Li, H., et al. (2012). Zinc oxide as a model transparent conducting oxide: A theoretical and experimental study of the impact of hydroxylation, vacancies, interstitials, and extrinsic doping on the electronic properties of the polar ZnO (0002) surface. Chemistry of Materials, 24, 3044–3055.

    Article  Google Scholar 

  59. Valtiner, M., Todorova, M., & Neugebauer, J. (2010). Hydrogen adsorption on polar ZnO(0001)-Zn: Extending equilibrium surface phase diagrams to kinetically stabilized structures. Physical Review B, 82, 165418.

    Article  ADS  Google Scholar 

  60. Dulub, O., Boatner, L. A., & Diebold, U. (2002). STM study of Cu growth on the ZnO(10\(\bar{1}\)0) surface. Surface Science, 504, 271–281.

    Article  ADS  Google Scholar 

  61. Powell, C. J., & Jablonski, A. (2010). NIST electron inelastic-mean-free-path database version 1.2. Gaithersburg, MD: National Institute of Standards and Technology.

    Google Scholar 

  62. Ozawa, K., & Mase, K. (2010). Angle-resolved photoelectron spectroscopy study of hydrogen adsorption on ZnO(10\(\bar{1}\)0). Physica Status Solidi (A), 207, 277–281.

    Google Scholar 

  63. Glowatzki, H., et al. (2008). “Soft” metallic contact to isolated C60 molecules. Nano Letters, 8, 3825–3829.

    Article  ADS  Google Scholar 

  64. Amsalem, P., et al. (2011). Metal-to-acceptor charge transfer through a molecular spacer layer. The Journal of Physical Chemistry C, 115, 17503–17507.

    Article  Google Scholar 

  65. Bröker, B., et al. (2009). A high molecular weight donor for electron injection interlayers on metal electrodes. ChemPhysChem, 10, 2947–2954.

    Article  Google Scholar 

  66. Koch, N., Duhm, S., Rabe, J. P., Vollmer, A., & Johnson, R. L. (2005). Optimized hole injection with strong electron acceptors at organic-metal interfaces. Physical Review Letters, 95, 237601.

    Article  ADS  Google Scholar 

  67. Day, S. R., Hatton, R. A., Chesters, M. A., & Willis, M. R. (2002). The use of charge transfer interlayers to control hole injection in molecular organic light emitting diodes. Thin Solid Films, 410, 159–166.

    Article  ADS  Google Scholar 

  68. Romaner, L., et al. (2007). Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal-organic interface. Physical Review Letters, 99, 256801.

    Article  ADS  Google Scholar 

  69. Rangger, G. M., et al. (2009). F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Physical Review B, 79, 165306.

    Article  ADS  Google Scholar 

  70. Rangger, G. M., et al. (2010). Analysis of bonding between conjugated organic molecules and noble metal surfaces using orbital overlap populations. Journal of Chemical Theory and Computation, 6, 3481–3489.

    Article  Google Scholar 

  71. Gao, W., & Kahn, A. (2002). Electronic structure and current injection in zinc phthalocyanine doped with tetrafluorotetracyanoquinodimethane: Interface versus bulk effects. Organic Electronics, 3, 53–63.

    Article  Google Scholar 

  72. Heinrich, V. E., & Cox, P. A. (1994). The surface science of metal oxides (1st ed.). Cambridge University Press.

    Google Scholar 

  73. Breedon, M., Spencer, M., & Yarovsky, I. (2009). Adsorption of NO and NO\(_2\) on the ZnO(2\(\bar{1}\)0) surface: A DFT study. Surface Science, 603, 3389–3399.

    Google Scholar 

  74. Chen, W., Qi, D., Gao, X., & Wee, A. T. S. (2009). Surface transfer doping of semiconductors. Progress in Surface Science, 84, 279–321.

    Article  ADS  Google Scholar 

  75. Braun, S., & Salaneck, W. R. (2007). Fermi level pinning at interfaces with tetrafluorotetracyanoquinodimethane (F4-TCNQ): The role of integer charge transfer states. Chemical Physics Letters, 438, 259–262.

    Article  ADS  Google Scholar 

  76. Qi, D., et al. (2007). Surface transfer doping of diamond (100) by tetrafluoro-tetracyanoquinodimethane. Journal of the American Chemical Society, 129, 8084–8085.

    Article  Google Scholar 

  77. Chen, W., Chen, S., Qi, D. C., Gao, X. Y., & Wee, A. T. S. (2007). Surface transfer p-type doping of epitaxial graphene. Journal of the American Chemical Society, 129, 10418–10422.

    Article  Google Scholar 

  78. Coletti, C., et al. (2010). Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B, 81, 235401.

    Article  ADS  Google Scholar 

  79. Mönch, W. (2001). Semiconductor surfaces and interfaces (3rd ed.). Springer.

    Google Scholar 

  80. Campbell, I. H., et al. (1996). Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Physical Review B, 54, R14321–R14324.

    Article  ADS  Google Scholar 

  81. Hofmann, O. T., Egger, D. A., & Zojer, E. (2010). Work-function modification beyond pinning: When do molecular dipoles count? Nano Letters, 10, PMID: 20939589, 4369–4374.

    Google Scholar 

  82. Heimel, G., Romaner, L., Brédas, J.-L., & Zojer, E. (2006). Interface energetics and level alignment at covalent metal-molecule junctions: p-conjugated thiols on gold. Physical Review Letters, 96, 196806.

    Article  ADS  Google Scholar 

  83. Gassenbauer, Y., & Klein, A. (2006). Electronic and chemical properties of Tin-Doped Indium Oxide (ITO) surfaces and ITO/ZnPc interfaces studied in-situ by photoelectron spectroscopy. The Journal of Physical Chemistry B, 110, 4793–4801.

    Article  Google Scholar 

  84. Yang, T., et al. (2011). Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes. Journal of Alloys and Compounds, 509, 5426–5430.

    Article  Google Scholar 

  85. Wahl, U., Correia, J. G., Mendonça, T., & Decoster, S. (2009). Direct evidence for Sb as a Zn site impurity in ZnO. Applied Physics Letters, 94, 261901.

    Article  ADS  Google Scholar 

  86. Senthil Kumar, E., et al. (2013). Optical evidence for donor behavior of Sb in ZnO nanowires. Applied Physics Letters, 102, 132105.

    Article  ADS  Google Scholar 

  87. Morkoç, H., & Özgür, Ü. (2008). Zinc oxide: Fundamentals, materials and device technology. Wiley.

    Google Scholar 

  88. Duhm, S., et al. (2009). Interdiffusion of molecular acceptors through organic layers to metal substrates mimics doping-related energy level shifts. Applied Physics Letters, 95.

    Google Scholar 

  89. Bruder, I., et al. (2010). A novel p-dopant with low diffusion tendency and its application to organic light-emitting diodes. Organic Electronics, 11, 589–593.

    Article  Google Scholar 

  90. Méndez, H., et al. (2013). Doping of organic semiconductors: impact of dopant strength and electronic coupling. Angewandte Chemie International Edition, 52, 7751–7755.

    Article  Google Scholar 

  91. Christodoulou, C., et al. (2014). Tuning the work function of graphene-on-quartz with a high weight molecular acceptor. The Journal of Physical Chemistry C, 118, 4784–4790.

    Article  Google Scholar 

  92. Lee, J.-H., et al. (2014). Effect of trap states on the electrical doping of organic semiconductors. Organic Electronics, 15, 16–21.

    Article  Google Scholar 

  93. Widmer, J., Fischer, J., Tress, W., Leo, K., & Riede, M. (2013). Electric potential mapping by thickness variation: A new method for model-free mobility determination in organic semiconductor thin films. Organic Electronics, 14, 3460–3471.

    Article  Google Scholar 

  94. Weichsel, C., Reineke, S., Furno, M., Lüssem, B., & Leo, K. (2012). Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in hostguest-systems. Journal of Applied Physics, 111, 033102.

    Article  ADS  Google Scholar 

  95. Scholz, R., et al. (2013). Quantifying charge transfer energies at donor-acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods. Journal of Physics: Condensed Matter, 25, 473201.

    ADS  Google Scholar 

  96. Weichsel, C., et al. (2012). Storage of charge carriers on emitter molecules in organic lightemitting diodes. Physical Review B, 86, 075204.

    Article  ADS  Google Scholar 

  97. Amsalem, P., et al. (2011). Interlayer molecular diffusion and thermodynamic equilibrium in organic heterostructures on a metal electrode. Journal of Applied Physics, 110, 113709.

    Article  ADS  Google Scholar 

  98. Falkenberg, C., et al. (2011). The role of energy level matching in organic solar cells-Hexaazatriphenylene hexacarbonitrile as transparent electron transport material. Solar Energy Materials and Solar Cells, 95, 927–932.

    Article  Google Scholar 

  99. Bröker, B., et al. (2010). Density-dependent reorientation and rehybridization of chemisorbed conjugated molecules for controlling interface electronic structure. Physical Review Letters, 104, 246805.

    Article  ADS  Google Scholar 

  100. Winget, P., et al. (2014). Defect-driven interfacial electronic structures at an organic/metal-oxide semiconductor heterojunction. Advanced Materials, 26, 4711–4716.

    Article  Google Scholar 

  101. Gruenewald, M., et al. (2015). Integer charge transfer and hybridization at an organic semiconductor/conductive oxide interface. The Journal of Physical Chemistry C, 119, 4865–4873.

    Article  Google Scholar 

  102. Racke, D. A., et al. (2015). Disrupted attosecond charge carrier delocalization at a hybrid organic/inorganic semiconductor interface. The Journal of Physical Chemistry Letters, 6, 1935–1941.

    Article  Google Scholar 

  103. Breuer, T., et al. (2011). Interrelation between substrate roughness and thin-film structure of functionalized acenes on graphite. Crystal Growth & Design, 11, 4996–5001.

    Article  Google Scholar 

  104. Barlow, S., & Raval, R. (2003). Complex organic molecules at metal surfaces: Bonding, organization and chirality. Surface Science Reports, 50, 201–341.

    Article  ADS  Google Scholar 

  105. Käfer, D., El Helou, M., Gemel, C., & Witte, G. (2008). Packing of planar organic molecules: Interplay of van der Waals and electrostatic interaction. Crystal Growth & Design, 8, 3053–3057.

    Google Scholar 

  106. Hwang, D. K., et al. (2004). Structural and optical properties of 6,13-pentacenequinone thin films. Applied Physics Letters, 85, 5568–5570.

    Article  ADS  Google Scholar 

  107. Potapov, V. V. K. (1971). Sorokin. Photoionization and ion-molecule reactions in quinones and alcohols. High Energy Chemistry, 5, 487.

    Google Scholar 

  108. Crocker, L., Wang, T., & Kebarle, P. (1993). Electron affinities of some polycyclic aromatic hydrocarbons, obtained from electron-transfer equilibria. Journal of the American Chemical Society, 115, 7818–7822.

    Article  Google Scholar 

  109. Delgado, M. C. R., et al. (2009). Impact of perfluorination on the charge-transport parameters of oligoacene crystalsD. Journal of the American Chemical Society, 131, 1502–1512.

    Article  Google Scholar 

  110. Fukagawa, H., et al. (2007). The role of the ionization potential in vacuum-level alignment at organic semiconductor interfaces. Advanced Materials, 19, 665–668.

    Article  Google Scholar 

  111. Koch, N., Elschner, A., Rabe, J. P., & Johnson, R. L. (2005). Work function independent hole-injection barriers between pentacene and conducting polymers. Advanced Materials, 17, 330–335.

    Article  Google Scholar 

  112. Koch, N., et al. (2006). Molecular orientation dependent energy levels at interfaces with pentacene and pentacenequinone. Organic Electronics, 7, 537–545.

    Article  Google Scholar 

  113. Heimel, G., et al. (2013). Charged and metallic molecular monolayers through surface-induced aromatic stabilization. Nature Chemistry, 5, 187–194.

    Article  ADS  Google Scholar 

  114. Chevtchenko, S. A., et al. (2006). Comparative study of the (0001) and (000\(\bar{1}\)) surfaces of ZnO. Applied Physics Letters, 89, 182111.

    Article  ADS  Google Scholar 

  115. Srikant, V., & Clarke, D. R. (1998). On the optical band gap of zinc oxide. Journal of Applied Physics, 83, 5447–5451.

    Article  ADS  Google Scholar 

  116. Hauschild, R., et al. (2006). Temperature dependent band gap and homogeneous line broadening of the exciton emission in ZnO. Physica Status Solidi (C), 3, 976–979.

    Google Scholar 

  117. Shriram, R. (2009). Thin film metal-oxides (1st ed.). Springer Science & Business Media.

    Google Scholar 

  118. Look, D. C., Leedy, K. D., Tomich, D. H., & Bayraktaroglu, B. (2010). Mobility analysis of highly conducting thin films: Application to ZnO. Applied Physics Letters, 96.

    Google Scholar 

  119. Grundmann, M. (2006). The physics of semiconductors (1st ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  120. Koch, N. (2007). Organic electronic devices and their functional interfaces. ChemPhysChem, 8, 1438–1455.

    Article  Google Scholar 

  121. Le, Q. T., et al. (2000). Photoemission study of aluminum/tris-(8-hydroxyquinoline) aluminum and aluminum/LiF/tris-(8-hydroxyquinoline) aluminum interfaces. Journal of AppliedPhysics, 87, 375–379.

    Article  ADS  Google Scholar 

  122. Chan, M. Y., et al. (2003). Efficient CsF/Yb/Ag cathodes for organic light-emitting devices. Applied Physics Letters, 82, 1784–1786.

    Article  ADS  Google Scholar 

  123. Cao, Y., Yu, G., Parker, I. D., & Heeger, A. J. (2000). Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes. Journal of Applied Physics, 88, 3618–3623.

    Article  ADS  Google Scholar 

  124. Nakamura, A., Tada, T., Mizukami, M., & Yagyu, S. (2004). Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode. Applied Physics Letters, 84, 130–132.

    Article  ADS  Google Scholar 

  125. Wang, S., Kanai, K., Kawabe, E., Ouchi, Y., & Seki, K. (2006). Enhanced electron injection into tris(8-hydroxyquinoline) aluminum (Alq3) thin films by tetrathianaphthacene (TTN) doping revealed by current-voltage characteristics. Chemical Physics Letters, 423, 170–173.

    Article  ADS  Google Scholar 

  126. Pfeiffer, M., et al. (2003). Doped organic semiconductors: Physics and application in light emitting diodes. High efficiency light emitters. Organic Electronics, 4, 89–103.

    Google Scholar 

  127. Chan, C. K., Kahn, A., Zhang, Q., Barlow, S., & Marder, S. R. (2007). Incorporation of cobaltocene as an n-dopant in organic molecular films. Journal of Applied Physics, 102, 014906.

    Article  ADS  Google Scholar 

  128. Parthasarathy, G., Shen, C., Kahn, A., & Forrest, S. R. (2001). Lithium doping of semiconducting organic charge transport materials. Journal of Applied Physics, 89, 4986–4992.

    Article  ADS  Google Scholar 

  129. Tringides, M. C. (1997). Surface diffusion: Atomistic and collective processes (1st ed.). Springer Science & Business Media.

    Google Scholar 

  130. Bröker, B., et al. (2008). Gold work function reduction by 2.2 eV with an air-stable molecular donor layer. Applied Physics Letters, 93, 243303.

    Article  ADS  Google Scholar 

  131. Monk, P. (1998). The viologens: Physicochemical properties, synthesis and appplications of the salts of 4,4 \(^{\prime }\)-bipyridine (1st ed.). Wiley.

    Google Scholar 

  132. Deinert, J.-C., et al. (2014). Ultrafast exciton formation at the ZnO(10\(\bar{1}\)0) surface. Physical Review Letters, 113, 057602.

    Article  ADS  Google Scholar 

  133. Schlesinger, R., et al. (2015). A unified theory of ZnO (adsorption induced) band bending. Physical Review Letters (in preparation).

    Google Scholar 

  134. Schlesinger, R., et al. (2015). Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning. Nature Communications, 6, 6754.

    Article  ADS  Google Scholar 

  135. Timpel, M., et al. (2014). Surface modification of ZnO(0001)-Zn with phosphonate-based self-assembled monolayers: Binding modes, orientation, and work function. Chemistry of Materials, 26, 5042–5050.

    Article  Google Scholar 

  136. Calzolari, A., Ruini, A., & Catellani, A. (2011). Anchor group versus conjugation: Toward the gap-state engineering of functionalized ZnO(10\(\bar{1}\)0) surface for optoelectronic applications. Journal of the American Chemical Society, 133, 5893–5899.

    Article  Google Scholar 

  137. Piersimoni, F., et al. (2015). Charge transfer absorption and emission at ZnO/organic interfaces. The Journal of Physical Chemistry Letters, 6, 500–504.

    Article  Google Scholar 

  138. Bardeen, J. (1947). Surface states and rectification at a metal semi-conductor contact. Physical Review, 71, 717–727.

    Article  ADS  Google Scholar 

  139. Fedders, P. A., Drabold, D. A., & Nakhmanson, S. (1998). Theoretical study on the nature of band-tail states in amorphous Si. Physical Review B, 58, 15624–15631.

    Article  ADS  Google Scholar 

  140. Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92, 1324–1324.

    Article  ADS  Google Scholar 

  141. Boubaker, K. (2011). A physical explanation to the controversial Urbach tailing universality. The European Physical Journal Plus, 126, 1–4.

    Google Scholar 

  142. Halperin, B. I., & Lax, M. (1966). Impurity-band tails in the high-density limit. I. Minimum counting methods. Physical Review, 148, 722–740.

    Article  ADS  Google Scholar 

  143. John, S., Chou, M. Y., Cohen, M. H., & Soukoulis, C. M. (1988). Density of states for an electron in a correlated Gaussian random potential: Theory of the Urbach tail. Physical Review B, 37, 6963–6976.

    Article  ADS  Google Scholar 

  144. John, S., Soukoulis, C., Cohen, M. H., & Economou, E. N. (1986). Theory of electron band tails and the Urbach optical-absorption edge. Physical Review Letters, 57, 1777–1780.

    Article  ADS  Google Scholar 

  145. Mott, N. (1967). Electrons in disordered structures. Advances in Physics, 16, 49–144.

    Article  ADS  Google Scholar 

  146. Sadigh, B., et al. (2011). First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass. Physical Review Letters, 106, 027401.

    Article  ADS  Google Scholar 

  147. Nguyen, T. H., & O’Leary, S. K. (2000). The dependence of the Fermi level on temperature, doping concentration, and disorder in disordered semiconductors. Journal of Applied Physics, 88, 3479–3483.

    Article  ADS  Google Scholar 

  148. O’Leary, S. K. (2004). An empirical density of states and joint density of states analysis of hydrogenated amorphous silicon: a review. Journal of Materials Science: Materials in Electronics, 15, 401–410.

    Google Scholar 

  149. Wu, H.-C., Peng, Y.-C., & Chen, C.-C. (2013). Effects of Ga concentration on electronic and optical properties of Ga-doped ZnO from first principles calculations. Optical Materials, 35, 509–515.

    Article  ADS  Google Scholar 

  150. Mirlin, A. D. (2000). Statistics of energy levels and eigenfunctions in disordered systems. Physics Reports, 326, 259–382.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  151. Lavrov, E. V., Herklotz, F., & Weber, J. (2009). Identification of hydrogen molecules in ZnO. Physical Review Letters, 102, 185502.

    Article  ADS  Google Scholar 

  152. Arijs, E., Cardon, F., & Maenhout-van der Vorst, W. (1973). The influence of surface donor states on the chemisorption kinetics of oxygen at the surface of ZnO single crystals. II. Experimental results. Journal of Solid State Chemistry, 6, 319–326.

    Google Scholar 

  153. Bang, J., Yang, H., & Holloway, P. H. (2006). Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology, 17, 973.

    Article  ADS  Google Scholar 

  154. Schmal, J. (1996). Defect-pool model for doped a-Si:H. Journal of Non-Crystalline Solids, Part 1, 387–390. In Proceedings of the Sixteenth International Conference on Amorphous Semiconductors—Science and Technology (pp. 198–200).

    Google Scholar 

  155. Okamura, T., Seki, Y., Nagakari, S., & Okushi, H. (1992). Junction properties and gap states of ZnO thin film prepared by sol-gel process. Japanese Journal of Applied Physics, 31, 3218.

    Article  ADS  Google Scholar 

  156. Girard, R., et al. (1997). Electronic structure of ZnO(0001) studied by angle-resolved photoelectron spectroscopy. Surface Science, 373, 409–417.

    Article  ADS  Google Scholar 

  157. Leysen, R., van Hove, H., Marien, J., & Loosveldt, J. (1972). Field emission and surface states on ZnO (0001). Physica Status Solidi (A), 11, 539–544.

    Google Scholar 

  158. Rizzi, A., & Lüth, H. (1998). Electronic gap states on GaN(0001)-(1 \(\times \) 1) surfaces studied by electron spectroscopies. Il Nuovo Cimento D, 20, 1039–1045.

    Article  ADS  Google Scholar 

  159. Garcia-Moliner, F., & Flores, F. (1976). Theory of electronic surface states in semiconductors. Journal of Physics C: Solid State Physics, 9, 1609.

    Article  ADS  Google Scholar 

  160. Vázquez, H., et al. (2004). Barrier formation at metal-organic interfaces: Dipole formation and the charge neutrality level. Applied Surface Science, 234. In The Ninth International Conference on the Formation of Semiconductor Interfaces (pp. 107–112).

    Google Scholar 

  161. Redfield, D. (1975). Transport properties of electrons in energy band tails. Advances in Physics, 24, 463–487.

    Article  ADS  Google Scholar 

  162. Anderson, P. W., Thouless, D. J., Abrahams, E., & Fisher, D. S. (1980). New method for a scaling theory of localization. Physical Review B, 22, 3519–3526.

    Article  ADS  MathSciNet  Google Scholar 

  163. Soukoulis, C. M., & Economou, E. N. (1999). Electronic localization in disordered systems. Waves in Random Media, 9, 255–269.

    Article  ADS  Google Scholar 

  164. Betti, M. G., et al. (2001). Density of states of a two-dimensional electron gas at semiconductor surfaces. Physical Review B, 63, 155315.

    Article  ADS  Google Scholar 

  165. Cardy, J. L. (1978). Electron localisation in disordered systems and classical solutions in Ginzburg-Landau field theory. Journal of Physics C: Solid State Physics, 11, L321.

    Article  ADS  Google Scholar 

  166. John, S., & Stephen, M. J. (1984). Electronic density of states in a long-range correlated potential. Journal of Physics C: Solid State Physics, 17, L559.

    Article  ADS  Google Scholar 

  167. Natsume, Y., Sakata, H., & Hirayama, T. (1995). Low-temperature electrical conductivity and optical absorption edge of ZnO films prepared by chemical vapour deposition. Physica Status Solidi (A), 148, 485–495.

    Article  ADS  Google Scholar 

  168. Aghamalyan, N. R., et al. (2003). Influence of thermal annealing on optical and electrical properties of ZnO films prepared by electron beam evaporation. Semiconductor Science and Technology, 18, 525.

    Article  ADS  Google Scholar 

  169. Xu, Z., Zheng, Q.-R., & Su, G. (2012). Charged states and band-gap narrowing in codoped ZnO nanowires for enhanced photoelectrochemical responses: Density functional firstprinciples calculations. Physical Review B, 85, 075402.

    Article  ADS  Google Scholar 

  170. Dutta, S., et al. (2007). Defects and the optical absorption in nanocrystalline ZnO. Journal of Physics: Condensed Matter, 19, 236218.

    ADS  Google Scholar 

  171. Tang, H., Lévy, F., Berger, H., & Schmid, P. E. (1995). Urbach tail of anatase TiO\(_2\). Physical Review B, 52, 7771–7774.

    Article  ADS  Google Scholar 

  172. Girtan, M., & Folcher, G. (2003). Structural and optical properties of indium oxide thin films prepared by an ultrasonic spray CVD process. Surface and Coatings Technology, 172, 242–250.

    Google Scholar 

  173. Shioda, T., Chichibu, S., Irie, T., Nakanishi, H., & Kariya, T. (1996). Influence of nonstoichiometry on the Urbach’s tails of absorption spectra for CuInSe2 single crystals. Journal of Applied Physics, 80, 1106–1111.

    Article  ADS  Google Scholar 

  174. Schmidt, M., Schoepke, A., Korte, L., Milch, O., & Fuhs, W. (2004). Density distribution of gap states in extremely thin a-Si: H layers on crystalline silicon wafers. Journal of Non-Crystalline Solids, 338–340, 211–214.

    Article  Google Scholar 

  175. Zojer, E., et al. (2000). Structure, morphology, and optical properties of highly ordered films of para-sexiphenyl. Physical Review B, 61, 16538–16549.

    Article  ADS  Google Scholar 

  176. Potocar, T., et al. (2011). Initial stages of a para-hexaphenyl film growth on amorphous mica. Physical Review B, 83, 075423.

    Article  ADS  Google Scholar 

  177. Hlawacek, G., et al. (2008). Characterization of step-edge barriers in organic thin-film growth. Science, 321, 108–111.

    Article  ADS  Google Scholar 

  178. Niko, A., Tasch, S., Meghdadi, F., Brandstätter, C., & Leising, G. (1997). Red-green-blue emission of parahexaphenyl devices with color-converting media. Journal of Applied Physics, 82, 4177–4182.

    Article  ADS  Google Scholar 

  179. Simbrunner, C., et al. (2009). Para-sexiphenyl-CdSe/ZnS nanocrystal hybrid light emitting diodes. Applied Physics Letters, 94, 073505.

    Article  ADS  Google Scholar 

  180. Mikami, T., & Yanagi, H. (1998). Epitaxial structuring of blue light-emitting p-phenylene oligomers. Applied Physics Letters, 73, 563–565.

    Article  ADS  Google Scholar 

  181. Gundlach, D. J., Lin, Y.-Y., Jackson, T. N., & Schlom, D. G. (1997). Oligophenyl-based organic thin film transistors. Applied Physics Letters, 71, 3853–3855.

    Google Scholar 

  182. Graupner, W., et al. (1994). Electroluminescence with conjugated polymers and oligomers. Molecular Crystals and Liquid Crystals Science and Technology, Section A, 256, 549–554.

    Google Scholar 

  183. Blumstengel, S., et al. (2010). Band-offset engineering in organic/inorganic semiconductor hybrid structures. Physical Chemistry Chemical Physics, 12, 11642–11646.

    Article  Google Scholar 

  184. Sparenberg, M., et al. (2014). Controlling the growth mode of para-sexiphenyl (6P) on ZnO by partial fluorination. Physical Chemistry Chemical Physics, 16, 26084–26093.

    Article  Google Scholar 

  185. Sala, D. F., Blumstengel, S., & Henneberger, F. (2011). Electrostatic-field-driven alignment of organic oligomers on ZnO surfaces. Physical Review Letters, 107, 146401.

    Google Scholar 

  186. Schlesinger, R., et al. (2015). Universal energy-level alignment of para-sexiphenyl on ZnO. Physical Review B (in preparation).

    Google Scholar 

  187. Koch, N., et al. (2003). Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Applied Physics Letters, 82, 70–72.

    Article  ADS  Google Scholar 

  188. Schroeder, P. G., France, C. B., Parkinson, B. A., & Schlaf, R. (2002). Orbital alignment at p-sexiphenyl and coronene/layered materials interfaces measured with photoemission spectroscopy. Journal of Applied Physics, 91, 9095–9107.

    Article  ADS  Google Scholar 

  189. Niko, A., Meghdadi, F., Ambrosch-Draxl, C., Vogl, P., & Leising, G. (1996). Optical absorbance of oriented thin films. Synthetic Metals, 76, 177–179.

    Article  Google Scholar 

  190. Greiner, M. T., et al. (2012). Universal energy-level alignment of molecules on metal oxides. Nature Materials, 11, 76–81.

    Article  ADS  Google Scholar 

  191. Winkler, S., et al. (2013). The impact of local work function variations on fermi level pinning of organic semiconductors. The Journal of Physical Chemistry C, 117, 22285–22289.

    Article  Google Scholar 

  192. Duhm, S., et al. (2008). Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Materials, 7, 326–332.

    Article  ADS  Google Scholar 

  193. Koch, N., & Vollmer, A. (2006). Electrode-molecular semiconductor contacts: Work-functiondependent hole injection barriers versus Fermi-level pinning. Applied Physics Letters, 89, 162107.

    Article  ADS  Google Scholar 

  194. Novák, J., et al. (2011). Crystal growth of para-sexiphenyl on clean and oxygen reconstructed Cu(110) surfaces. Physical Chemistry Chemical Physics, 13, 14675–14684.

    Article  Google Scholar 

  195. Frank, P., et al. (2007). Influence of surface temperature and surface modifications on the initial layer growth of para-hexaphenyl on mica (001). Surface Science, 601, 2152–2160.

    Article  ADS  Google Scholar 

  196. Oehzelt, M., et al. (2007). The molecular orientation of para-sexiphenyl on Cu(110) and Cu(110) p(2x1)O. ChemPhysChem, 8, 1707–1712.

    Article  Google Scholar 

  197. Berkebile, S., et al. (2006). Diffusion versus sticking anisotropy: Anisotropic growth of organic molecular films. Surface Science, 600, L313–L317.

    Article  ADS  Google Scholar 

  198. Hwang, J., Wan, A., & Kahn, A. (2009). Energetics of metal-organic interfaces: New experiments and assessment of the field. Materials Science and Engineering: R, 64, 1–31.

    Article  Google Scholar 

  199. Braun, K.-F., & Hla, S.-W. (2005). Probing the conformation of physisorbed molecules at the atomic scale using STM manipulation. Nano Letters, 5, 73–76.

    Article  ADS  Google Scholar 

  200. Koch, N., et al. (2005). Influence of molecular conformation on organic/metal interface energetics. Chemical Physics Letters, 413, 390–395.

    Article  ADS  Google Scholar 

  201. Sueyoshi, T., Fukagawa, H., Ono, M., Kera, S., & Ueno, N. (2009). Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. Applied Physics Letters, 95, 183303.

    Article  ADS  Google Scholar 

  202. Blumstengel, S., et al. (2008). Electronic coupling in organic-inorganic semiconductor hybrid structures with type-II energy level alignment. Physical Review B, 77, 085323.

    Article  ADS  Google Scholar 

  203. Timpel, M., et al. (2015). Energy-level engineering at ZnO/Oligophenylene Interfaces with phosphonate-based self-assembled monolayers. ACS Applied Materials & Interfaces, 7, 11900–11907.

    Article  Google Scholar 

  204. Blumstengel, S., Sadofev, S., Puls, J., & Henneberger, F. (2009). An inorganic/organic semiconductor “Sandwich” structure grown by molecular beam epitaxy. Advanced Materials, 21, 4850–4853.

    Article  Google Scholar 

  205. Blumstengel, S., Sadofev, S., Xu, C., Puls, J., & Henneberger, F. (2006). Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure. Physical Review Letters, 97, 237401.

    Article  ADS  Google Scholar 

  206. Blumstengel, S., Sadofev, S., & Henneberger, F. (2008). Electronic coupling of optical excitations in organic/inorganic semiconductor hybrid structures. New Journal of Physics, 10, 065010.

    Article  ADS  Google Scholar 

  207. Itskos, G., et al. (2007). Efficient dipole-dipole coupling of Mott-Wannier and Frenkel excitons in (Ga, In)N quantum well/polyfluorene semiconductor heterostructures. Physical Review B, 76, 035344.

    Article  ADS  Google Scholar 

  208. Rindermann, J. J., et al. (2011). Dependence of resonance energy transfer on exciton dimensionality. Physical Review Letters, 107, 236805.

    Article  ADS  Google Scholar 

  209. Smith, R., Liu, B., Bai, J., & Wang, T. (2013). Hybrid III-Nitride/organic semiconductor nanostructure with high efficiency nonradiative energy transfer for white light emitters. Nano Letters, 13, 3042–3047.

    Article  ADS  Google Scholar 

  210. Heliotis, G., et al. (2006). Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Advanced Materials, 18, 334–338.

    Article  Google Scholar 

  211. Basko, D., Rocca, G. C. L., Bassani, F., & Agranovich, V. M. (1999). Förster energy transfer from a semiconductor quantum well to an organic material overlayer. The European Physical Journal B—Condensed Matter and Complex Systems, 8, 353–362.

    Article  ADS  Google Scholar 

  212. Agranovich, V. M., Gartstein, Y. N., & Litinskaya, M. (2011). Hybrid resonant organic-inorganic nanostructures for optoelectronic applications. Chemical Reviews, 111, 5179–5214.

    Article  Google Scholar 

  213. Kobin, B., Grubert, L., Blumstengel, S., Henneberger, F., & Hecht, S. (2012). Vacuum-processable ladder-type oligophenylenes for organic-inorganic hybrid structures: Synthesis, optical and electrochemical properties upon increasing planarization as well as thin film growth. Journal of Materials Chemistry, 22, 4383–4390.

    Article  Google Scholar 

  214. Ha, Y. E., et al. (2013). Inverted type polymer solar cells with self-assembled monolayer treated ZnO. The Journal of Physical Chemistry C, 117, 2646–2652.

    Article  Google Scholar 

  215. Kedem, N., et al. (2014). Morphology-, synthesis- and doping-independent tuning of ZnO work function using phenylphosphonates. Physical Chemistry Chemical Physics, 16, 8310–8319.

    Article  Google Scholar 

  216. Guo, S., et al. (2012). n-Doping of organic electronic materials using air-stable organometallics. Advanced Materials, 24, 699–703.

    Article  Google Scholar 

  217. Olthof, S., et al. (2012). Ultralow doping in organic semiconductors: Evidence of trap filling. Physical Review Letters, 109, 176601.

    Article  ADS  Google Scholar 

  218. Guo, S., et al. (2012). n-Doping of organic electronic materials using air-stable organometallics: A mechanistic study of reduction by dimeric sandwich compounds. Chemistry—A European Journal, 18, 14760–14772.

    Article  Google Scholar 

  219. Giordano, A. J., et al. (2015). Organometallic dimers: Application to work-function reduction of conducting oxides. ACS Applied Materials & Interfaces, 7, PMID: 25685873, 4320–4326.

    Google Scholar 

  220. Gusev, O. V., et al. (1997). Reduction of ruthenium arenecyclopentadienyl complexes reactions induced by electron transfer. Journal of Organometallic Chemistry, 534, 57–66.

    Article  Google Scholar 

  221. Rivera-Rodriguez, P., Ruiz-Ramirez, L., Zaitsev, B., & Ivanova, T. (1986). X-ray photoelectron spectra of ruthenium(II) phthalocyanines. Transition Metal Chemistry, 11, 447–448.

    Article  Google Scholar 

  222. Pelzer, T., et al. (2000). Electronic structure of the Ru(0001) surface. Journal of Physics: Condensed Matter, 12, 2193.

    ADS  Google Scholar 

  223. Paniagua, S. A., et al. (2013). Production of heavily n- and p-doped CVD graphene with solution-processed redox-active metal-organic species. Materials Horizons, 1, 111–115.

    Article  Google Scholar 

  224. Amsalem, P., et al. (2013). Role of charge transfer, dipole-dipole interactions, and electrostatics in Fermi-level pinning at a molecular heterojunction on a metal surface. Physical Review B, 87, 035440.

    Article  ADS  Google Scholar 

  225. Wang, H., et al. (2014). Band-bending in organic semiconductors: The role of alkali-halide interlayers. Advanced Materials, 26, 925–930.

    Article  Google Scholar 

  226. Sadofev, S., et al. (2005). Growth of high-quality ZnMgO epilayers and ZnO/ZnMgO quantum well structures by radical-source molecular-beam epitaxy on sapphire. Applied Physics Letters, 87, 091903.

    Article  ADS  Google Scholar 

  227. Bakin, A., et al. (2007). ZnMgO-ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano-LEDs. Physica Status Solidi (C), 4, 158–161.

    Google Scholar 

  228. Zhang, H. H., et al. (2013). Mg composition dependent band offsets of Zn1-xMgxO/ZnO heterojunctions. Physical Chemistry Chemical Physics, 15, 11231–11235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Schlesinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schlesinger, R. (2017). Results and Discussion. In: Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46624-8_5

Download citation

Publish with us

Policies and ethics