Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 789 Accesses

Abstract

This chapter will give an introduction to the fundamental physics and processes, which are necessary to understand the present work. It will start with an overview of the properties of organic semiconductors followed by some basics of electronic structure theory. Subsequently, different models and processes relevant for interfacial energy–level alignment will be discussed.

Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clark

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For reasons of simplicity the wavefunction of (2.11) are not orthonormal, which is not problematic, since energies will be calculated via the Ritz method (2.12) anyway.

  2. 2.

    Note that the \(\beta \)’s in the top right and bottom left cell of the determinant in (2.22) are only present for a cyclic molecule, since, e.g., in benzene the first and sixth carbon atom are adjacent.

  3. 3.

    Not considering special cases as discontinuous \(E(\vec {k})\) relations.

  4. 4.

    Which is the product of initial and final densities used to count, e.g., transition states.

  5. 5.

    If not two metals are adjoined.

  6. 6.

    The charges by ionized dopants \(N_\mathrm {D}^+\) and \(N_\mathrm {A}^-\) cannot diffuse.

  7. 7.

    Not necessarily differentiable at the interface, due to different dielectric permittivities at the individual sides of the junction..

  8. 8.

    Note that band bending caused by different doping levels is definitely also present in ZnO originating from nonuniform doping towards the surface due to hydrogen diffusion [67]. Nevertheless, this effect is very small and hence it is neglected.

  9. 9.

    Note that it is commonly omitted to name this criterion. Nevertheless, most integrations shown are based on constant \(N_\mathrm {D}\) and \(N_\mathrm {A}\). Otherwise one will not arrive at (2.44), but has to find the antiderivative functions of \(N_\mathrm {D}\) and \(N_\mathrm {A}\), which could still prove much easier than solving the unapproximated problem.

  10. 10.

    Particularly this latter point might be problematic as the results will show: Given a downward band bended situation in ZnO, charges are confined within 1–2 nm from the surface (see Fig. 5.30). Potentially, this 2D electron gas [80] has completely new quantum states, which changes the behavior of the internal ZnO band bending.

  11. 11.

    One is known, the other will be solved for.

  12. 12.

    Of course a little interaction must always be present, otherwise the two system would not stick together.

  13. 13.

    In thermodynamic equilibrium.

  14. 14.

    Note that in the cited work push back occurs. Yet, what is important is that there is no interface dipole or Fermi–level pinning.

References

  1. Jones, J. E. (1924). On the determination of molecular fields. II. From the equation of state of a gas. Proceedings of the Royal Society of London. Series A, 106, 463–477.

    Article  ADS  Google Scholar 

  2. Chelikowsky, J. R., & Cohen, M. L. (1974). Electronic structure of silicon. Physical Review B, 10, 5095–5107.

    Article  ADS  Google Scholar 

  3. Wang, D., Tang, L., Long, M., & Shuai, Z. (2009). First-principles investigation of organic semiconductors for thermoelectric applications. The Journal of Chemical Physics, 131, 224704.

    Article  ADS  Google Scholar 

  4. Hasegawa, T., & Takeya, J. (2009). Organic field-effect transistors using single crystals. Science and Technology of Advanced Materials, 10, 024314.

    Article  ADS  Google Scholar 

  5. Stillman, G., Wolfe, C., & Dimmock, J. (1970). Hall coefficient factor for polar mode scattering in n-type GaAs. Journal of Physics and Chemistry of Solids, 31, 1199–1204.

    Article  ADS  Google Scholar 

  6. Bässler, H. (1993). Charge Transport in disordered organic photoconductors a monte carlo simulation study. Physica Status Solidi (b), 175, 15–56.

    Google Scholar 

  7. Karl, N. (2003) Charge carrier transport in organic semiconductors. Synthetic Metals 133–134. In Proceedings of the Yamada Conference LVI. The Fourth International Symposium on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2001) (pp. 649–657).

    Google Scholar 

  8. Holstein, T. (1959). Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics, 8, 325–342.

    Article  ADS  MATH  Google Scholar 

  9. Holstein, T. (1959). Studies of polaron motion: Part II. The small polaron. Annals of Physics, 8, 343–389.

    Article  ADS  MATH  Google Scholar 

  10. Yu, P. Y., & Cardona, M. (2010). Fundamentals of Semiconductors (4th ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  11. Brütting, W., & Adachi, C. (2012). Physics of Organic Semiconductors (2nd ed.). John Wiley & Sons.

    Google Scholar 

  12. Czycholl, G. (2008). Theoretische Festkörperphysik (3rd ed.). Berlin: Springer.

    Google Scholar 

  13. Hückel, E. (1931). Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik, 70, 204–286.

    Article  ADS  MATH  Google Scholar 

  14. Hückel, E. (1931). Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik, 72, 310–337.

    Article  ADS  MATH  Google Scholar 

  15. Atkins, P. W., & Friedman, R. S. (1996). Molecular Quantum Mechanics (3rd ed.). Oxford University Press.

    Google Scholar 

  16. Atkins, P., & de Paula, J. (2006). Physical Chemistry (8th ed.). Oxford University Press.

    Google Scholar 

  17. Ashcroft, N. W., & Mermin, N. D. (1976) Solid State Physics (1st ed.). Harcourt College Publishers.

    Google Scholar 

  18. Garcia-Moliner, F., & Flores, F. (1976). Theory of electronic surface states in semiconductors. Journal of Physics C: Solid State Physics, 9, 1609.

    Article  ADS  Google Scholar 

  19. Heine, V. (1965). Theory of surface states. Physical Review, 138, A1689–A1696.

    Article  ADS  MATH  Google Scholar 

  20. Urbach, F. (1953). The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 92, 1324–1324.

    Article  ADS  Google Scholar 

  21. John, S., Soukoulis, C., Cohen, M. H., & Economou, E. N. (1986). Theory of electron band tails and the urbach optical-absorption edge. Physical Review Letters, 57, 1777–1780.

    Article  ADS  Google Scholar 

  22. Boubaker, K. (2011). A physical explanation to the controversial Urbach tailing universality. The European Physical Journal Plus, 126, 1–4.

    Article  ADS  Google Scholar 

  23. Halperin, B. I., & Lax, M. (1966). Impurity-band tails in the high-density limit. I. Minimum counting methods. Physical Review, 148, 722–740.

    Article  ADS  Google Scholar 

  24. John, S., Chou, M. Y., Cohen, M. H., & Soukoulis, C. M. (1988). Density of states for an electron in a correlated Gaussian random potential: Theory of the Urbach tail. Physical Review B, 37, 6963–6976.

    Article  ADS  Google Scholar 

  25. Mott, N. (1967). Electrons in disordered structures. Advances in Physics, 16, 49–144.

    Article  ADS  Google Scholar 

  26. Tamm, I. (1932). On the possible bound states of electrons on a crystal surface. Physikalische Zeitschrift der Sowjetunion, 1, 733.

    Google Scholar 

  27. Davison, S. G., & Steslicka, M. (1996) Basic Theory of Surface States (1st ed.). Clarendon Press.

    Google Scholar 

  28. Lüth, H. (1995). Surfaces and Interfaces of Solid Materials (3rd ed.). Berlin: Springer.

    Book  Google Scholar 

  29. Stern, F. (1971). Band-tail model for optical absorption and for the mobility edge in amorphous silicon. Physical Review B, 3, 2636–2645.

    Article  ADS  Google Scholar 

  30. Morgan, T. N. (1965). Broadening of impurity bands in heavily doped semiconductors. Physical Review, 139, A343–A348.

    Article  ADS  MATH  Google Scholar 

  31. Cardy, J. L. (1978). Electron localisation in disordered systems and classical solutions in Ginzburg-Landau field theory. Journal of Physics C: Solid State Physics, 11, L321.

    Article  ADS  Google Scholar 

  32. John, S., & Stephen, M. J. (1984). Electronic density of states in a long-range correlated potential. Journal of Physics C: Solid State Physics, 17, L559.

    Article  ADS  Google Scholar 

  33. Soukoulis, C. M., Cohen, M. H., & Economou, E. N. (1984). Exponential band tails in random systems. Physical Review Letters, 53, 616–619.

    Article  ADS  Google Scholar 

  34. Anderson, P. W., Thouless, D. J., Abrahams, E., & Fisher, D. S. (1980). New method for a scaling theory of localization. Physical Review B, 22, 3519–3526.

    Article  ADS  MathSciNet  Google Scholar 

  35. Soukoulis, C. M., & Economou, E. N. (1999). Electronic localization in disordered systems. Waves in Random Media, 9, 255–269.

    Article  ADS  Google Scholar 

  36. Redfield, D. (1975). Transport properties of electrons in energy band tails. Advances in Physics, 24, 463–487.

    Article  ADS  Google Scholar 

  37. Tiedje, T., Cebulka, J. M., Morel, D. L., & Abeles, B. (1981). Evidence for exponential band tails in amorphous silicon hydride. Physical Review Letters, 46, 1425–1428.

    Article  ADS  Google Scholar 

  38. Mirlin, A. D. (2000). Statistics of energy levels and eigenfunctions in disordered systems. Physics Reports, 326, 259–382.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lang, N. D., & Kohn, W. (1973). Theory of metal surfaces: induced surface charge and image potential. Physical Review B, 7, 3541–3550.

    Article  ADS  Google Scholar 

  40. Pierret, R. F. (2002). Advanced Semiconductor Fundamentals (2nd ed.). Prentice Hall.

    Google Scholar 

  41. Bierwagen, O., Ive, T., Walle, C. G. V. D. & Speck, J. S. (2008) Causes of incorrect carrier-type identification in van der Pauw-Hall measurements. Applied Physics Letters, 93, 242108 (2008).

    Google Scholar 

  42. Look, D. C., et al. (2005). Evidence for native-defect donors in n-type ZnO. Physical Review Letters, 95, 225502.

    Article  ADS  Google Scholar 

  43. Shi, G. A., Saboktakin, M., Stavola, M., & Pearton, S. J. (2004). Hidden hydrogen in as-grown ZnO. Applied Physics Letters, 85, 5601–5603.

    Article  ADS  Google Scholar 

  44. Van de Walle, C. G. (2000). Hydrogen as a cause of doping in Zinc Oxide. Physical Review Letters, 85, 1012–1015.

    Article  ADS  Google Scholar 

  45. Lavrov, E. V., Weber, J., Börrnert, F., Van de Walle, C. G., & Helbig, R. (2002). Hydrogenrelated defects in ZnO studied by infrared absorption spectroscopy. Physical Review B, 66, 165205.

    Article  ADS  Google Scholar 

  46. Lavrov, E. V., Herklotz, F., & Weber, J. (2009). Identification of hydrogen molecules in ZnO. Physical Review Letters, 102, 185502.

    Article  ADS  Google Scholar 

  47. Lavrov, E. V., Herklotz, F., & Weber, J. (2009). Identification of two hydrogen donors in ZnO. Physical Review B, 79, 165210.

    Article  ADS  Google Scholar 

  48. Allen, M. W., & Durbin, S. M. (2008). Influence of oxygen vacancies on Schottky contacts to ZnO. Applied Physics Letters, 92, 122110.

    Article  ADS  Google Scholar 

  49. Zhang, S. B., Wei, S.-H., & Zunger, A. (2001). Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B, 63, 075205.

    Article  ADS  Google Scholar 

  50. Qiu, H., Meyer, B., Wang, Y., & Wöll, C. (2008). Lonization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials. Physical Review Letters, 101, 236401.

    Article  ADS  Google Scholar 

  51. Markevich, I. V., Kushnirenko, V. I., Borkovska, L. V., & Bulakh, B. M. (2005). Mechanism of formation of highly conductive layer on ZnO crystal surface. Solid State Communications, 136, 475–478.

    Article  ADS  Google Scholar 

  52. Ohgaki, T., et al. (2008). Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals. Journal of Materials Research, 23, 2293–2295.

    Article  ADS  Google Scholar 

  53. Look, D. C., Hemsky, J. W., & Sizelove, J. R. (1999). Residual native shallow donor in ZnO. Physical Review Letters, 82, 2552–2555.

    Article  ADS  Google Scholar 

  54. Kim, Y.-S., & Park, C. H. (2009). Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: Origin of n-Type doping. Physical Review Letters, 102, 086403.

    Article  ADS  Google Scholar 

  55. Meyer, B. K., Sann, J., Hofmann, D. M., Neumann, C., & Zeuner, A. (2005). Shallow donors and acceptors in ZnO. Semiconductor Science and Technology, 20, S62–S66.

    Article  ADS  Google Scholar 

  56. Monakhov, E. V., Kuznetsov, A. Y., & Svensson, B. G. (2009). Zinc oxide: Bulk growth, role of hydrogen and Schottky diodes. Journal of Physics D: Applied Physics, 42, 153001.

    Article  ADS  Google Scholar 

  57. Oba, F., Nishitani, S. R., Isotani, S., Adachi, H., & Tanaka, I. (2001). Energetics of native defects in ZnO. Journal of Applied Physics, 90, 824–828.

    Article  ADS  Google Scholar 

  58. Janotti, A., & Van de Walle, C. G. (2007). Native point defects in ZnO. Physical Review B, 76, 165202.

    Article  ADS  Google Scholar 

  59. Park, C. H., Zhang, S. B., & Wei, S.-H. (2002). Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B, 66, 073202.

    Article  ADS  Google Scholar 

  60. Lyons, J. L., Janotti, A., & Van de Walle, C. G. (2009). Why nitrogen cannot lead to p-type conductivity in ZnO. Applied Physics Letters, 95, 252105.

    Article  ADS  Google Scholar 

  61. Lee, E.-C., Kim, Y.-S., Jin, Y.-G., & Chang, K. J. (2001). Compensation mechanism for N acceptors in ZnO. Physical Review B, 64, 085120.

    Article  ADS  Google Scholar 

  62. Look, D. C., et al. (2002). Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied Physics Letters, 81, 1830–1832.

    Article  ADS  Google Scholar 

  63. Ryu, Y., et al. (2000). Synthesis of p-type ZnO films. Journal of Crystal Growth, 216, 330–334.

    Article  ADS  Google Scholar 

  64. Ryu, Y. R., Lee, T. S., & White, H. W. (2003). Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Applied Physics Letters, 83, 87–89.

    Article  ADS  Google Scholar 

  65. Minegishi, K., et al. (1997). Growth of p-type zinc oxide films by chemical vapor deposition. Japanese Journal of Applied Physics, 36, L1453–L1455.

    Article  ADS  Google Scholar 

  66. Sze, S. M., & Ng, K. K. (2007). Physics of semiconductor devices (3rd edn). John Wiley & Sons Inc.

    Google Scholar 

  67. Traeger, F., Kauer, M., Wöll, C., Rogalla, D., & Becker, H.-W. (2011). Analysis of surface, subsurface, and bulk hydrogen in ZnO using nuclear reaction analysis. Physical Review B, 84, 075462.

    Article  ADS  Google Scholar 

  68. Koch, N. (2007). Organic electronic devices and their functional interfaces. ChemPhysChem, 8, 1438–1455.

    Article  Google Scholar 

  69. Hwang, J., Wan, A., & Kahn, A. (2009). Energetics of metal-organic interfaces: New experiments and assessment of the field. Materials Science and Engineering: R, 64, 1–31.

    Article  Google Scholar 

  70. Ishii, H., & Seki, K. (1997). Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. IEEE Transactions on Electron Devices, 44, 1295–1301.

    Article  ADS  Google Scholar 

  71. Fukagawa, H., et al. (2007). The role of the ionization potential in vacuum-level alignment at organic semiconductor interfaces. Advanced Materials, 19, 665–668.

    Article  Google Scholar 

  72. Braun, S., Salaneck, W. R., & Fahlman, M. (2009). Energy-level alignment at organic/metal and organic/organic interfaces. Advanced Materials, 21, 1450–1472.

    Article  Google Scholar 

  73. Ishii, H., Sugiyama, K., Ito, E., & Seki, K. (1999). Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Advanced Materials, 11, 605–625.

    Article  Google Scholar 

  74. Wang, H., et al. (2014). Band-bending in organic semiconductors: The role of alkali-halide interlayers. Advanced Materials, 26, 925–930.

    Article  Google Scholar 

  75. Lange, I., et al. (2011). Band bending in conjugated polymer layers. Physical Review Letters, 106, 216402.

    Article  ADS  Google Scholar 

  76. Blakesley, J. C., & Greenham, N. C. (2009). Charge transfer at polymer-electrode interfaces: The effect of energetic disorder and thermal injection on band bending and open-circuit voltage. Journal of Applied Physics, 106, 034507.

    Article  ADS  Google Scholar 

  77. Nishi, T., Kanai, K., Ouchi, Y., Willis, M. R., & Seki, K. (2005). Evidence for the atmospheric p-type doping of titanyl phthalocyanine thin film by oxygen observed as the change of interfacial electronic structure. Chemical Physics Letters, 414, 479–482.

    Article  ADS  Google Scholar 

  78. Ishii, H. et al. (2004). Kelvin probe study of band bending at organic semiconductor/metal interfaces: Examination of Fermi level alignment. Physica Status Solidi (a), 201, 1075–1094.

    Google Scholar 

  79. Oehzelt, M., Koch, N., & Heimel, G. (2014). Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nature Communications, 5, 4174.

    Article  ADS  Google Scholar 

  80. Hu, Y., et al. (2009). Observation of a 2D electron gas and the tuning of the electrical conductance of ZnO nanowires by controllable surface band-bending. Advanced Functional Materials, 19, 2380–2387.

    Article  Google Scholar 

  81. Mönch, W. (1990). On the physics of metal-semiconductor interfaces. Reports on Progress in Physics, 53, 221.

    Article  ADS  Google Scholar 

  82. Vázquez, H., et al. (2004). Barrier formation at metal-organic interfaces: Dipole formation and the charge neutrality level. Applied Surface Science, 234. The Ninth International Conference on the Formation of Semiconductor Interfaces (pp. 107–112).

    Google Scholar 

  83. Mönch, W. (2006). Slope parameters of the barrier heights of metal-organic contacts. Applied Physics Letters, 88, 112116.

    Article  ADS  Google Scholar 

  84. Cahen, D., & Kahn, A. (2003). Electron energetics at surfaces and interfaces: Concepts and experiments. Advanced Materials, 15, 271–277.

    Article  Google Scholar 

  85. Zhang, F., et al. (2007). Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors. Organic Electronics, 8, 606–614.

    Article  Google Scholar 

  86. Hill, I. G., & Kahn, A. (1998). Energy level alignment at interfaces of organic semiconductor heterostructures. Journal of Applied Physics, 84, 5583–5586.

    Article  ADS  Google Scholar 

  87. Hill, I. G., & Kahn, A. (1999). Organic semiconductor heterointerfaces containing bathocuproine. Journal of Applied Physics, 86, 4515–4519.

    Article  ADS  Google Scholar 

  88. Braun, S., Osikowicz, W., Wang, Y., & Salaneck, W. R. (2007). Energy level alignment regimes at hybrid organic-organic and inorganic-organic interfaces. Organic Electronics, 8, 14–20.

    Article  Google Scholar 

  89. Bardeen, J. (1947). Surface states and rectification at a metal semi-conductor contact. Physical Review, 71, 717–727.

    Article  ADS  Google Scholar 

  90. Bredas, J. L., & Street, G. B. (1985). Polarons, bipolarons, and solitons in conducting polymers. Accounts of Chemical Research, 18, 309–315.

    Article  Google Scholar 

  91. Fahlman, M., et al. (2007). Electronic structure of hybrid interfaces for polymer-based electronics. Journal of Physics: Condensed Matter, 19, 183202.

    ADS  Google Scholar 

  92. Winkler, S., et al. (2015) Probing the energy levels in hole-doped molecular semiconductors. Materials Horizons (2015).

    Google Scholar 

  93. Sueyoshi, T., Fukagawa, H., Ono, M., Kera, S., & Ueno, N. (2009). Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. Applied Physics Letters, 95, 183303.

    Article  ADS  Google Scholar 

  94. Lang, N. D., & Kohn, W. (1970). Theory of metal surfaces: Charge density and surface energy. Physical Review B, 1, 4555–4568.

    Article  ADS  Google Scholar 

  95. Crispin, X., et al. (2002). Characterization of the interface dipole at organic/metal interfaces. Journal of the American Chemical Society, 124, 8131–8141.

    Article  Google Scholar 

  96. Hofmann, O. T., Rangger, G. M., & Zojer, E. (2008). Reducing the metalwork function beyond pauli pushback: A computational investigation of tetrathiafulvalene and viologen on coinage metal surfaces. The Journal of Physical Chemistry C, 112, 20357–20365.

    Article  Google Scholar 

  97. Lang, N. D. (1981). Interaction between closed-shell systems and metal surfaces. Physical Review Letters, 46, 842–845.

    Article  ADS  Google Scholar 

  98. Watkins, N. J., Yan, L., & Gao, Y. (2002). Electronic structure symmetry of interfaces between pentacene and metals. Applied Physics Letters, 80, 4384–4386.

    Article  ADS  Google Scholar 

  99. Schroeder, P. G., France, C. B., Park, J. B., & Parkinson, B. A. (2002). Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces. Journal of Applied Physics, 91, 3010–3014.

    Article  ADS  Google Scholar 

  100. Li, H., Duan, Y., Coropceanu, V., & Bredas, J.-L. (2009). Electronic structure of the pentacene-gold interface: A density-functional theory study. Organic Electronics, 10, 1571–1578.

    Article  Google Scholar 

  101. Greiner, M. T., et al. (2012). Universal energy-level alignment of molecules on metal oxides. Nature Materials, 11, 76–81.

    Article  ADS  Google Scholar 

  102. Winkler, S., et al. (2013). The impact of localwork function variations on fermi level pinning of organic semiconductors. The Journal of Physical Chemistry C, 117, 22285–22289.

    Article  Google Scholar 

  103. Witte, G., & Wöll, C. (2004). Growth of aromatic molecules on solid substrates for applications in organic electronics. Journal of Materials Research, 19, 1889–1916.

    Article  ADS  Google Scholar 

  104. Venables, J. A., Spiller, G. D. T., & Hanbucken, M. (1984). Nucleation and growth of thin films. Reports on Progress in Physics, 47, 399.

    Article  ADS  Google Scholar 

  105. Schreiber, F. (2004). Organic molecular beam deposition: Growth studies beyond the first monolayer. Physica Status Solidi (a), 201, 1037–1054.

    Google Scholar 

  106. Einax, M., Dieterich, W., & Maass, P. (2013). Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies. Reviews of Modern Physics, 85, 921–939.

    Article  ADS  Google Scholar 

  107. Hlawacek, G., et al. (2008). Characterization of step-edge barriers in organic thin-film growth. Science, 321, 108–111.

    Article  ADS  Google Scholar 

  108. Ruiz, R., et al. (2003). Dynamic Scaling, island size distribution, and morphology in the aggregation regime of submonolayer pentacene films. Physical Review Letters, 91, 136102.

    Article  ADS  Google Scholar 

  109. Liu, H., Lin, Z., Zhigilei, L. V., & Reinke, P. (2008). Fractal structures in fullerene layers: Simulation of the growth process. The Journal of Physical Chemistry C, 112, 4687–4695.

    Article  Google Scholar 

  110. Evans, J., Thiel, P., & Bartelt, M. (2006). Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface Science Reports, 61, 1–128.

    Article  ADS  Google Scholar 

  111. Cox, E., et al. (2005). Temperature dependence of island growth shapes during submonolayer deposition of Ag on Ag(111). Physical Review B, 71, 115414.

    Article  ADS  Google Scholar 

  112. Smoluchowski, R. (1941). Anisotropy of the electronic work function of metals. Physical Review, 60, 661–674.

    Article  ADS  MATH  Google Scholar 

  113. Duhm, S., et al. (2008). Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Materials, 7, 326–332.

    Article  ADS  Google Scholar 

  114. Salzmann, I., et al. (2008). Structural and electronic properties of pentacene-fullerene heterojunctions. Journal of Applied Physics, 104(114518), 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Schlesinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schlesinger, R. (2017). Fundamentals. In: Energy-Level Control at Hybrid Inorganic/Organic Semiconductor Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46624-8_2

Download citation

Publish with us

Policies and ethics