Discussion and Conclusions

  • Adam Ross SolomonEmail author
Part of the Springer Theses book series (Springer Theses)


Our concern throughout this thesis has been the use of cosmology as a laboratory for testing gravity. In the first part, we focused on the theoretical and cosmological implications of endowing the graviton with a finite mass, leading to theories either of massive gravity, in which there is a single, massive graviton, or massive bigravity, in which two gravitons, one massless and the other massive, interact with each other.


Dark Energy Massive Gravity Dark Matter Particle Modify Gravity Massive Graviton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, Quantum corrections in massive gravity. Phys. Rev. D88, 084058 (2013). arXiv:1307.7169 ADSGoogle Scholar
  2. 2.
    M. von Strauss, A. Schmidt-May, J. Enander, E. Mörtsell, S. Hassan, Cosmological solutions in bimetric gravity and their observational tests. JCAP 1203, 042 (2012). arXiv:1111.1655 CrossRefGoogle Scholar
  3. 3.
    Y. Akrami, T.S. Koivisto, M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. JHEP 1303, 099 (2013). arXiv:1209.0457 ADSCrossRefGoogle Scholar
  4. 4.
    F. Könnig, A. Patil, L. Amendola, Viable cosmological solutions in massive bimetric gravity. JCAP 1403, 029 (2014). arXiv:1312.3208 MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. Comelli, M. Crisostomi, L. Pilo, Perturbations in massive gravity cosmology. JHEP 1206, 085 (2012). arXiv:1202.1986 ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A. De Felice, A.E. Gümrükçüoğlu, S. Mukohyama, N. Tanahashi, T. Tanaka, Viable cosmology in bimetric theory. JCAP 1406, 037 (2014). arXiv:1404.0008 CrossRefGoogle Scholar
  7. 7.
    D. Comelli, M. Crisostomi, L. Pilo, FRW cosmological perturbations in massive bigravity. Phys. Rev. D90(8), 084003 (2014). arXiv:1403.5679 ADSGoogle Scholar
  8. 8.
    D. Mattingly, Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005). arXiv:gr-qc/0502097 zbMATHGoogle Scholar
  9. 9.
    Y. Yamashita, A. De Felice, T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter. Int. J. Mod. Phys. D23, 3003 (2014). arXiv:1408.0487 MathSciNetzbMATHGoogle Scholar
  10. 10.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, On couplings to matter in massive (bi-)gravity. Class. Quant. Grav. 32, 035022 (2015). arXiv:1408.1678 ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava et al., Massive cosmologies. Phys. Rev. D84, 124046 (2011). arXiv:1108.5231 ADSGoogle Scholar
  12. 12.
    A.E. Gümrükçüoğlu, C. Lin, S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity. JCAP 1111, 030 (2011). arXiv:1109.3845 CrossRefGoogle Scholar
  13. 13.
    A.E. Gümrükçüoğlu, C. Lin, S. Mukohyama, Cosmological perturbations of self-accelerating universe in nonlinear massive gravity. JCAP 1203, 006 (2012). arXiv:1111.4107 CrossRefGoogle Scholar
  14. 14.
    B. Vakili, N. Khosravi, Classical and quantum massive cosmology for the open FRW universe. Phys. Rev. D85, 083529 (2012). arXiv:1204.1456 ADSGoogle Scholar
  15. 15.
    A. De Felice, A.E. Gümrükçüoğlu, S. Mukohyama, Massive gravity: nonlinear instability of the homogeneous and isotropic universe. Phys. Rev. Lett. 109, 171101 (2012). arXiv:1206.2080 ADSCrossRefGoogle Scholar
  16. 16.
    M. Fasiello, A.J. Tolley, Cosmological perturbations in massive gravity and the Higuchi bound. JCAP 1211, 035 (2012). arXiv:1206.3852 ADSCrossRefGoogle Scholar
  17. 17.
    A. De Felice, A.E. Gümrükçüoğlu, C. Lin, S. Mukohyama, Nonlinear stability of cosmological solutions in massive gravity. JCAP 1305, 035 (2013). arXiv:1303.4154 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Amendola, S. Fogli, A. Guarnizo, M. Kunz, A. Vollmer, Model-independent constraints on the cosmological anisotropic stress. Phys. Rev. D89, 063538 (2014). arXiv:1311.4765 ADSGoogle Scholar
  19. 19.
    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)MathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Zumalacárregui, J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D89, 064046 (2014). arXiv:1308.4685 ADSGoogle Scholar
  21. 21.
    J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Healthy theories beyond Horndeski. arXiv:1404.6495
  22. 22.
    J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Exploring gravitational theories beyond Horndeski. arXiv:1408.1952
  23. 23.
    S. Hassan, A. Schmidt-May, M. von Strauss, On partially massless bimetric gravity. Phys. Lett. B726, 834–838 (2013). arXiv:1208.1797 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    C. de Rham, S. Renaux-Petel, Massive gravity on de sitter and unique candidate for partially massless gravity. JCAP 1301, 035 (2013). arXiv:1206.3482 MathSciNetCrossRefGoogle Scholar
  25. 25.
    C. de Rham, K. Hinterbichler, R.A. Rosen, A.J. Tolley, Evidence for and obstructions to nonlinear partially massless gravity. Phys. Rev. D88(2), 024003 (2013). arXiv:1302.0025 ADSGoogle Scholar
  26. 26.
    E. Joung, W. Li, M. Taronna, No-go theorems for unitary and interacting partially massless spin-two fields. Phys. Rev. Lett. 113, 091101 (2014). arXiv:1406.2335 ADSCrossRefGoogle Scholar
  27. 27.
    S. Hassan, A. Schmidt-May, M. von Strauss, Particular solutions in bimetric theory and their implications. Int. J. Mod. Phys. D23, 1443002 (2014). arXiv:1407.2772 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S. Garcia-Saenz, R.A. Rosen, A non-linear extension of the spin-2 partially massless symmetry. arXiv:1410.8734
  29. 29.
    A. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B39, 393–394 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    C. Llinares, D. Mota, Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation. Phys. Rev. Lett. 110(16), 161101 (2013). arXiv:1302.1774
  31. 31.
    C. Llinares, D.F. Mota, Cosmological simulations of screened modified gravity out of the static approximation: effects on matter distribution. Phys. Rev. D89, 084023 (2014). arXiv:1312.6016 ADSGoogle Scholar
  32. 32.
    Y. Akrami, T.S. Koivisto, D.F. Mota, M. Sandstad, Bimetric gravity doubly coupled to matter: theory and cosmological implications. JCAP 1310, 046 (2013). arXiv:1306.0004 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Hassan, A. Schmidt-May, M. von Strauss, On consistent theories of massive spin-2 fields coupled to gravity. JHEP 1305, 086 (2013). arXiv:1208.1515
  34. 34.
    J. Noller, S. Melville, The coupling to matter in massive, bi- and multi-gravity. JCAP 1501, 003 (2014). arXiv:1408.5131 ADSMathSciNetGoogle Scholar
  35. 35.
    S. Hassan, M. Kocic, A. Schmidt-May, Absence of ghost in a new bimetric-matter coupling. arXiv:1409.1909
  36. 36.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity. Phys. Rev. D90(12), 124042 (2014). arXiv:1409.3834 ADSGoogle Scholar
  37. 37.
    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity. Lect. Notes Phys. 720, 403–433 (2007). arXiv:astro-ph/0601672
  38. 38.
    A. Schmidt-May, Mass eigenstates in bimetric theory with ghost-free matter coupling. JCAP 1501, 039 (2014). arXiv:1409.3146 ADSMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Particle CosmologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations