Cosmology Beyond Einstein pp 155-195 | Cite as
Lorentz Violation During Inflation
Chapter
First Online:
- 586 Downloads
Abstract
For this final chapter, we move to the early Universe to ask what constraints we can put on the violation of Lorentz invariance during inflation. As discussed in Sect. 2.2, we can use Einstein-aether theory (æ-theory) Jacobson and Mattingly (Phys. Rev. D64, 024028, (2001), [1]), Jacobson (PoS, QG-PH, 020, (2007), [2]) to model Lorentz violation in the boost sector, i.e., while maintaining rotational invariance on spatial hypersurfaces, at low energies.
References
- 1.T. Jacobson, D. Mattingly, Gravity with a dynamical preferred frame. Phys. Rev. D64, 024028 (2001). arXiv:gr-qc/0007031
- 2.T. Jacobson, Einstein-aether gravity: a status report. PoS QG-PH, 020 (2007). arXiv:0801.1547
- 3.P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D79, 084008 (2009). arXiv:0901.3775 ADSMathSciNetGoogle Scholar
- 4.W. Donnelly, T. Jacobson, Coupling the inflaton to an expanding aether. Phys. Rev. D82, 064032 (2010). arXiv:1007.2594 ADSGoogle Scholar
- 5.J.D. Barrow, Some inflationary Einstein-aether cosmologies. Phys. Rev. D85, 047503 (2012). arXiv:1201.2882 ADSGoogle Scholar
- 6.P. Sandin, B. Alhulaimi, A. Coley, Stability of Einstein-aether cosmological models. Phys. Rev. D87(4), 044031 (2013). arXiv:1211.4402
- 7.S.M. Carroll, E.A. Lim, Lorentz-violating vector fields slow the universe down. Phys. Rev. D70, 123525 (2004). arXiv:hep-th/0407149
- 8.E.A. Lim, Can we see Lorentz-violating vector fields in the CMB? Phys. Rev. D71, 063504 (2005). arXiv:astro-ph/0407437
- 9.I. Carruthers, T. Jacobson, Cosmic alignment of the aether. Phys. Rev. D83, 024034 (2011). arXiv:1011.6466 ADSGoogle Scholar
- 10.D. Blas, S. Sibiryakov, Technically natural dark energy from Lorentz breaking. JCAP 1107, 026 (2011). arXiv:1104.3579 ADSCrossRefGoogle Scholar
- 11.B. Audren, D. Blas, J. Lesgourgues, S. Sibiryakov, Cosmological constraints on Lorentz violating dark energy. JCAP 1308, 039 (2013). arXiv:1305.0009 ADSCrossRefGoogle Scholar
- 12.A.R. Solomon, J.D. Barrow, Inflationary instabilities of Einstein-aether cosmology. Phys. Rev. D89, 024001 (2014). arXiv:1309.4778 ADSGoogle Scholar
- 13.P. Peter, J.-P. Uzan, Primordial Cosmology, Oxford Graduate Texts (Oxford University Press, Oxford, 2009)Google Scholar
- 14.H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)ADSCrossRefGoogle Scholar
- 15.J.M. Bardeen, Gauge invariant cosmological perturbations. Phys. Rev. D22, 1882–1905 (1980)ADSMathSciNetGoogle Scholar
- 16.V.F. Mukhanov, H. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992)Google Scholar
- 17.Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014). arXiv:1303.5076
- 18.Planck Collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 571, A22 (2014). arXiv:1303.5082
- 19.G. Robbers, N. Afshordi, M. Doran, Does Planck mass run on the cosmological horizon scale? Phys. Rev. Lett. 100, 111101 (2008). arXiv:0708.3235 ADSCrossRefGoogle Scholar
- 20.R. Bean, M. Tangmatitham, Current constraints on the cosmic growth history. Phys. Rev. D81, 083534 (2010). arXiv:1002.4197 ADSGoogle Scholar
- 21.B.Z. Foster, T. Jacobson, Post-Newtonian parameters and constraints on Einstein-aether theory. Phys. Rev. D73, 064015 (2006). arXiv:gr-qc/0509083
- 22.L. Shao, R.N. Caballero, M. Kramer, N. Wex, D.J. Champion et al., A new limit on local Lorentz invariance violation of gravity from solitary pulsars. Class. Quantum Gravity 30, 165019 (2013). arXiv:1307.2552 ADSCrossRefGoogle Scholar
- 23.K. Yagi, D. Blas, N. Yunes, E. Barausse, Strong binary pulsar constraints on Lorentz violation in gravity. Phys. Rev. Lett. 112, 161101 (2014). arXiv:1307.6219 ADSCrossRefGoogle Scholar
- 24.J.W. Elliott, G.D. Moore, H. Stoica, Constraining the new Aether: gravitational Cerenkov radiation. JHEP 0508, 066 (2005). arXiv:hep-ph/0505211
- 25.D. Blas, O. Pujolas, S. Sibiryakov, Consistent extension of Horava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 ADSMathSciNetCrossRefGoogle Scholar
- 26.D. Blas, O. Pujolas, S. Sibiryakov, Comment on ‘Strong coupling in extended Horava-Lifshitz gravity’. Phys. Lett. B688, 350–355 (2010). arXiv:0912.0550 ADSMathSciNetCrossRefGoogle Scholar
- 27.D. Blas, O. Pujolas, S. Sibiryakov, Models of non-relativistic quantum gravity: the good, the bad and the healthy. JHEP 1104, 018 (2011). arXiv:1007.3503 ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 28.M. Libanov, V. Rubakov, E. Papantonopoulos, M. Sami, S. Tsujikawa, UV stable Lorentz-violating dark energy with transient phantom era. JCAP 0708, 010 (2007). arXiv:0704.1848 ADSCrossRefGoogle Scholar
- 29.C. Armendariz-Picon, A. Diez-Tejedor, R. Penco, Effective theory approach to the spontaneous breakdown of Lorentz invariance. JHEP 1010, 079 (2010). arXiv:1004.5596 ADSCrossRefzbMATHGoogle Scholar
Copyright information
© Springer International Publishing AG 2017