Lorentz Violation During Inflation

  • Adam Ross SolomonEmail author
Part of the Springer Theses book series (Springer Theses)


For this final chapter, we move to the early Universe to ask what constraints we can put on the violation of Lorentz invariance during inflation. As discussed in Sect.  2.2, we can use Einstein-aether theory (æ-theory) Jacobson and Mattingly (Phys. Rev. D64, 024028, (2001), [1]), Jacobson (PoS, QG-PH, 020, (2007), [2]) to model Lorentz violation in the boost sector, i.e., while maintaining rotational invariance on spatial hypersurfaces, at low energies.


  1. 1.
    T. Jacobson, D. Mattingly, Gravity with a dynamical preferred frame. Phys. Rev. D64, 024028 (2001). arXiv:gr-qc/0007031
  2. 2.
    T. Jacobson, Einstein-aether gravity: a status report. PoS QG-PH, 020 (2007). arXiv:0801.1547
  3. 3.
    P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D79, 084008 (2009). arXiv:0901.3775 ADSMathSciNetGoogle Scholar
  4. 4.
    W. Donnelly, T. Jacobson, Coupling the inflaton to an expanding aether. Phys. Rev. D82, 064032 (2010). arXiv:1007.2594 ADSGoogle Scholar
  5. 5.
    J.D. Barrow, Some inflationary Einstein-aether cosmologies. Phys. Rev. D85, 047503 (2012). arXiv:1201.2882 ADSGoogle Scholar
  6. 6.
    P. Sandin, B. Alhulaimi, A. Coley, Stability of Einstein-aether cosmological models. Phys. Rev. D87(4), 044031 (2013). arXiv:1211.4402
  7. 7.
    S.M. Carroll, E.A. Lim, Lorentz-violating vector fields slow the universe down. Phys. Rev. D70, 123525 (2004). arXiv:hep-th/0407149
  8. 8.
    E.A. Lim, Can we see Lorentz-violating vector fields in the CMB? Phys. Rev. D71, 063504 (2005). arXiv:astro-ph/0407437
  9. 9.
    I. Carruthers, T. Jacobson, Cosmic alignment of the aether. Phys. Rev. D83, 024034 (2011). arXiv:1011.6466 ADSGoogle Scholar
  10. 10.
    D. Blas, S. Sibiryakov, Technically natural dark energy from Lorentz breaking. JCAP 1107, 026 (2011). arXiv:1104.3579 ADSCrossRefGoogle Scholar
  11. 11.
    B. Audren, D. Blas, J. Lesgourgues, S. Sibiryakov, Cosmological constraints on Lorentz violating dark energy. JCAP 1308, 039 (2013). arXiv:1305.0009 ADSCrossRefGoogle Scholar
  12. 12.
    A.R. Solomon, J.D. Barrow, Inflationary instabilities of Einstein-aether cosmology. Phys. Rev. D89, 024001 (2014). arXiv:1309.4778 ADSGoogle Scholar
  13. 13.
    P. Peter, J.-P. Uzan, Primordial Cosmology, Oxford Graduate Texts (Oxford University Press, Oxford, 2009)Google Scholar
  14. 14.
    H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984)ADSCrossRefGoogle Scholar
  15. 15.
    J.M. Bardeen, Gauge invariant cosmological perturbations. Phys. Rev. D22, 1882–1905 (1980)ADSMathSciNetGoogle Scholar
  16. 16.
    V.F. Mukhanov, H. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203–333 (1992)Google Scholar
  17. 17.
    Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014). arXiv:1303.5076
  18. 18.
    Planck Collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 571, A22 (2014). arXiv:1303.5082
  19. 19.
    G. Robbers, N. Afshordi, M. Doran, Does Planck mass run on the cosmological horizon scale? Phys. Rev. Lett. 100, 111101 (2008). arXiv:0708.3235 ADSCrossRefGoogle Scholar
  20. 20.
    R. Bean, M. Tangmatitham, Current constraints on the cosmic growth history. Phys. Rev. D81, 083534 (2010). arXiv:1002.4197 ADSGoogle Scholar
  21. 21.
    B.Z. Foster, T. Jacobson, Post-Newtonian parameters and constraints on Einstein-aether theory. Phys. Rev. D73, 064015 (2006). arXiv:gr-qc/0509083
  22. 22.
    L. Shao, R.N. Caballero, M. Kramer, N. Wex, D.J. Champion et al., A new limit on local Lorentz invariance violation of gravity from solitary pulsars. Class. Quantum Gravity 30, 165019 (2013). arXiv:1307.2552 ADSCrossRefGoogle Scholar
  23. 23.
    K. Yagi, D. Blas, N. Yunes, E. Barausse, Strong binary pulsar constraints on Lorentz violation in gravity. Phys. Rev. Lett. 112, 161101 (2014). arXiv:1307.6219 ADSCrossRefGoogle Scholar
  24. 24.
    J.W. Elliott, G.D. Moore, H. Stoica, Constraining the new Aether: gravitational Cerenkov radiation. JHEP 0508, 066 (2005). arXiv:hep-ph/0505211
  25. 25.
    D. Blas, O. Pujolas, S. Sibiryakov, Consistent extension of Horava gravity. Phys. Rev. Lett. 104, 181302 (2010). arXiv:0909.3525 ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Blas, O. Pujolas, S. Sibiryakov, Comment on ‘Strong coupling in extended Horava-Lifshitz gravity’. Phys. Lett. B688, 350–355 (2010). arXiv:0912.0550 ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    D. Blas, O. Pujolas, S. Sibiryakov, Models of non-relativistic quantum gravity: the good, the bad and the healthy. JHEP 1104, 018 (2011). arXiv:1007.3503 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Libanov, V. Rubakov, E. Papantonopoulos, M. Sami, S. Tsujikawa, UV stable Lorentz-violating dark energy with transient phantom era. JCAP 0708, 010 (2007). arXiv:0704.1848 ADSCrossRefGoogle Scholar
  29. 29.
    C. Armendariz-Picon, A. Diez-Tejedor, R. Penco, Effective theory approach to the spontaneous breakdown of Lorentz invariance. JHEP 1010, 079 (2010). arXiv:1004.5596 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Particle CosmologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations