Skip to main content

Cosmological Implications of Doubly-Coupled Massive Bigravity

  • Chapter
  • First Online:
  • 705 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

So far we have studied the cosmological solutions of massive bigravity in Chaps. 3 and 4 with matter coupled only to one metric, and discussed some of the theoretical issues with extending to a bimetric matter coupling in Chap. 5. As emphasised in the introduction of Chap. 5, the singly-coupled theory spoils the metric interchange symmetry present in vacuum; the kinetic and mass terms treat the metrics on equal footing, but this is broken when one couples matter to only one metric. It is therefore compelling to investigate other types of matter coupling that extend this metric-interchange symmetry to the entire theory. Moreover, as demonstrated in Chap. 3, cosmological background viability and linear stability rule out all but a small handful of the parameter space of the singly-coupled theory. By extending the matter coupling, we may be able to open up the space of observationally-allowed bimetric theories.

The universe is full of magical things patiently waiting for our wits to grow sharper.

Eden Phillpotts, A Shadow Passes

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We will denote the effective metric with “eff” written as a superscript or subscript interchangeably.

  2. 2.

    In Ref. [3] the effective metric is given in an explicitly symmetric form, but this is not needed since \(g_{\mu \alpha }\mathbb X^{\alpha }{}_{\nu } = g_{\nu \alpha }\mathbb X^{\alpha }{}_{\mu }\), as first shown in Ref. [1]; see also Appendix C.

  3. 3.

    See also Sect. 2.1.2 for the redundancy of the Planck masses in the singly-coupled theory.

  4. 4.

    In the singly-coupled theory, Eq. (6.22) would be a constraint equation arising from the Bianchi identity and stress-energy conservation. When using the effective coupling, the stress-energy conservation holds with respect to the effective metric, rather than \(g_{\mu \nu }\) or \(f_{\mu \nu }\). This gives rise to the pressure-dependent term in the left bracket. Due to this term, both branches—obtained by setting either bracket to zero—can be regarded as dynamical. We choose to adopt the terminology from the singly-coupled case here, however.

  5. 5.

    These are not, however, \(\Lambda \)CDM cosmologies for the effective metric due to the nontrivial coupling to \(\rho \).

  6. 6.

    It is not difficult to see that there are no cases in which the two metrics are related by a dynamical conformal factor; from Eq. (6.31) any conformal relation means that \(da_f/da_g=a_f/a_g\), but this implies \(a_f/a_g=\mathrm {const.}\)

  7. 7.

    Note that \(\beta <0\) leads to instabilities in the case of doubly-coupled dRGT massive gravity, in which one of the metrics is nondynamical [8].

  8. 8.

    So that a partially-massless graviton has four polarisations rather than the five of a massive graviton, hence the name.

  9. 9.

    If the case described in Sect. 6.4.1 is truly partially massless, this may be an exception, as there is a new gauge symmetry to protect against quantum corrections.

  10. 10.

    Indeed, the fact that a small graviton mass is stable against quantum corrections is one of the main motivations for studying massive (bi)gravity, particularly as a candidate to explain the accelerating Universe.

  11. 11.

    Vacuum solutions for this model were previously studied in Ref. [30].

References

  1. S. Hassan, A. Schmidt-May, M. von Strauss, On consistent theories of massive spin-2 fields coupled to gravity. JHEP 1305, 086 (2013). arXiv:1208.1515

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Yamashita, A. De Felice, T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter. Int. J. Mod. Phys. D 23, 3003 (2014). arXiv:1408.0487

    Article  MathSciNet  MATH  Google Scholar 

  3. C. de Rham, L. Heisenberg, R.H. Ribeiro, On couplings to matter in massive (bi-)gravity. Class. Quantum Gravity 32, 035022 (2015). arXiv:1408.1678

    Article  ADS  MATH  Google Scholar 

  4. S. Hassan, M. Kocic, A. Schmidt-May, Absence of Ghost in a New Bimetric-Matter Coupling. arXiv:1409.1909

  5. C. de Rham, L. Heisenberg, R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity. Phys. Rev. D 90(12), 124042 (2014). arXiv:1409.3834

    Article  ADS  Google Scholar 

  6. J. Noller, On Consistent Kinetic and Derivative Interactions for Gravitons. arXiv:1409.7692

  7. J. Noller, S. Melville, The coupling to matter in Massive. Bi- and Multi-Gravity. JCAP 1501, 003 (2014). arXiv:1408.5131

    Google Scholar 

  8. A.E. Gümrükçüoğlu, L. Heisenberg, S. Mukohyama, Cosmological perturbations in massive gravity with doubly coupled matter. JCAP 1502(02), 022 (2015). arXiv:1409.7260

    Article  MathSciNet  Google Scholar 

  9. S. Hassan, R.A. Rosen, On non-linear actions for massive gravity. JHEP 1107, 009 (2011). arXiv:1103.6055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Schmidt-May, Mass eigenstates in bimetric theory with ghost-free matter coupling. JCAP 1501, 039 (2014). arXiv:1409.3146

    ADS  MathSciNet  Google Scholar 

  11. D. Comelli, M. Crisostomi, F. Nesti, L. Pilo, FRW cosmology in ghost free massive gravity. JHEP 1203, 067 (2012). arXiv:1111.1983

    Article  ADS  MATH  Google Scholar 

  12. M. von Strauss, A. Schmidt-May, J. Enander, E. Mörtsell, S. Hassan, Cosmological solutions in bimetric gravity and their observational tests. JCAP 1203, 042 (2012). arXiv:1111.1655

    Article  Google Scholar 

  13. M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory. JHEP 1201, 035 (2012). arXiv:1110.6153

    Article  ADS  MATH  Google Scholar 

  14. M. Berg, I. Buchberger, J. Enander, E. Mörtsell, S. Sjörs, Growth histories in bimetric massive gravity. JCAP 1212, 021 (2012). arXiv:1206.3496

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. Akrami, T.S. Koivisto, M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. JHEP 1303, 099 (2013). arXiv:1209.0457

    Article  ADS  Google Scholar 

  16. Y. Akrami, T.S. Koivisto, M. Sandstad, Cosmological Constraints on Ghost-Free Bigravity: Background Dynamics and Late-Time Acceleration. arXiv:1302.5268

  17. F. Könnig, A. Patil, L. Amendola, Viable cosmological solutions in massive bimetric gravity. JCAP 1403, 029 (2014). arXiv:1312.3208

    Article  MathSciNet  Google Scholar 

  18. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah et al., The hubble space telescope cluster supernova survey: V. improving the dark energy constraints above \(z>1\) and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). arXiv:1105.3470

    Article  ADS  Google Scholar 

  19. Planck Collaboration: Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014) arXiv:1303.5076

  20. L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 427(4), 3435–3467 (2013). arXiv:1203.6594

    Article  ADS  Google Scholar 

  21. F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith et al., The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant. Mon. Not. R. Astron. Soc. 416, 3017–3032 (2011). arXiv:1106.3366

    Article  ADS  Google Scholar 

  22. C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson et al., The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 418, 1707–1724 (2011). arXiv:1108.2635

    Article  ADS  Google Scholar 

  23. J. Sollerman, E. Mörtsell, T. Davis, M. Blomqvist, B. Bassett et al., First-year sloan digital sky survey-II (SDSS-II) supernova results: constraints on non-standard cosmological models. Astrophys. J. 703, 1374–1385 (2009). arXiv:0908.4276

    Article  ADS  Google Scholar 

  24. H. van Dam, M. Veltman, Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 22, 397–411 (1970)

    Article  ADS  Google Scholar 

  25. V. Zakharov, Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970)

    ADS  Google Scholar 

  26. A. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)

    Article  ADS  Google Scholar 

  27. C. de Rham, S. Renaux-Petel, Massive gravity on de Sitter and unique candidate for partially massless gravity. JCAP 1301, 035 (2013). arXiv:1206.3482

    Article  MathSciNet  Google Scholar 

  28. S. Hassan, A. Schmidt-May, M. von Strauss, On partially massless bimetric gravity. Phys. Lett. B 726, 834–838 (2013). arXiv:1208.1797

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. S. Hassan, A. Schmidt-May, M. von Strauss, Higher Derivative Gravity and Conformal Gravity From Bimetric and Partially Massless Bimetric Theory. arXiv:1303.6940

  30. S. Hassan, A. Schmidt-May, M. von Strauss, Particular solutions in bimetric theory and their implications. Int. J. Mod. Phys. D 23, 1443002 (2014). arXiv:1407.2772

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Y. Akrami, T.S. Koivisto, D.F. Mota, M. Sandstad, Bimetric gravity doubly coupled to matter: theory and cosmological implications. JCAP 1310, 046 (2013). arXiv:1306.0004

    Article  ADS  MathSciNet  Google Scholar 

  32. C. de Rham, K. Hinterbichler, R.A. Rosen, A.J. Tolley, Evidence for and obstructions to nonlinear partially massless gravity. Phys. Rev. D 88(2), 024003 (2013). arXiv:1302.0025

    Article  ADS  Google Scholar 

  33. C. de Rham, G. Gabadadze, L. Heisenberg, D. Pirtskhalava, Nonrenormalization and naturalness in a class of scalar-tensor theories. Phys. Rev. D 87(8), 085017 (2013). arXiv:1212.4128

    Article  ADS  Google Scholar 

  34. C. de Rham, L. Heisenberg, R.H. Ribeiro, Quantum corrections in massive gravity. Phys. Rev. D 88, 084058 (2013). arXiv:1307.7169

    Article  ADS  Google Scholar 

  35. L. Heisenberg, Quantum corrections in massive bigravity and new effective composite metrics. arXiv:1410.4239

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ross Solomon .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Solomon, A.R. (2017). Cosmological Implications of Doubly-Coupled Massive Bigravity. In: Cosmology Beyond Einstein. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-46621-7_6

Download citation

Publish with us

Policies and ethics