Advertisement

Cosmological Implications of Doubly-Coupled Massive Bigravity

  • Adam Ross SolomonEmail author
Chapter
  • 589 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

So far we have studied the cosmological solutions of massive bigravity in Chaps.  3 and  4 with matter coupled only to one metric, and discussed some of the theoretical issues with extending to a bimetric matter coupling in Chap.  5. As emphasised in the introduction of Chap.  5, the singly-coupled theory spoils the metric interchange symmetry present in vacuum; the kinetic and mass terms treat the metrics on equal footing, but this is broken when one couples matter to only one metric. It is therefore compelling to investigate other types of matter coupling that extend this metric-interchange symmetry to the entire theory. Moreover, as demonstrated in Chap.  3, cosmological background viability and linear stability rule out all but a small handful of the parameter space of the singly-coupled theory. By extending the matter coupling, we may be able to open up the space of observationally-allowed bimetric theories.

Keywords

Cosmological Constant Cosmic Microwave Background Vacuum Energy Massive Gravity Friedmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Hassan, A. Schmidt-May, M. von Strauss, On consistent theories of massive spin-2 fields coupled to gravity. JHEP 1305, 086 (2013). arXiv:1208.1515 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Yamashita, A. De Felice, T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter. Int. J. Mod. Phys. D 23, 3003 (2014). arXiv:1408.0487 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, On couplings to matter in massive (bi-)gravity. Class. Quantum Gravity 32, 035022 (2015). arXiv:1408.1678 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Hassan, M. Kocic, A. Schmidt-May, Absence of Ghost in a New Bimetric-Matter Coupling. arXiv:1409.1909
  5. 5.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity. Phys. Rev. D 90(12), 124042 (2014). arXiv:1409.3834 ADSCrossRefGoogle Scholar
  6. 6.
    J. Noller, On Consistent Kinetic and Derivative Interactions for Gravitons. arXiv:1409.7692
  7. 7.
    J. Noller, S. Melville, The coupling to matter in Massive. Bi- and Multi-Gravity. JCAP 1501, 003 (2014). arXiv:1408.5131 Google Scholar
  8. 8.
    A.E. Gümrükçüoğlu, L. Heisenberg, S. Mukohyama, Cosmological perturbations in massive gravity with doubly coupled matter. JCAP 1502(02), 022 (2015). arXiv:1409.7260 MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Hassan, R.A. Rosen, On non-linear actions for massive gravity. JHEP 1107, 009 (2011). arXiv:1103.6055 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Schmidt-May, Mass eigenstates in bimetric theory with ghost-free matter coupling. JCAP 1501, 039 (2014). arXiv:1409.3146 ADSMathSciNetGoogle Scholar
  11. 11.
    D. Comelli, M. Crisostomi, F. Nesti, L. Pilo, FRW cosmology in ghost free massive gravity. JHEP 1203, 067 (2012). arXiv:1111.1983 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    M. von Strauss, A. Schmidt-May, J. Enander, E. Mörtsell, S. Hassan, Cosmological solutions in bimetric gravity and their observational tests. JCAP 1203, 042 (2012). arXiv:1111.1655 CrossRefGoogle Scholar
  13. 13.
    M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory. JHEP 1201, 035 (2012). arXiv:1110.6153 ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Berg, I. Buchberger, J. Enander, E. Mörtsell, S. Sjörs, Growth histories in bimetric massive gravity. JCAP 1212, 021 (2012). arXiv:1206.3496 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Akrami, T.S. Koivisto, M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality. JHEP 1303, 099 (2013). arXiv:1209.0457 ADSCrossRefGoogle Scholar
  16. 16.
    Y. Akrami, T.S. Koivisto, M. Sandstad, Cosmological Constraints on Ghost-Free Bigravity: Background Dynamics and Late-Time Acceleration. arXiv:1302.5268
  17. 17.
    F. Könnig, A. Patil, L. Amendola, Viable cosmological solutions in massive bimetric gravity. JCAP 1403, 029 (2014). arXiv:1312.3208 MathSciNetCrossRefGoogle Scholar
  18. 18.
    N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah et al., The hubble space telescope cluster supernova survey: V. improving the dark energy constraints above \(z>1\) and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). arXiv:1105.3470 ADSCrossRefGoogle Scholar
  19. 19.
    Planck Collaboration: Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. (2014) arXiv:1303.5076
  20. 20.
    L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton et al., The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 427(4), 3435–3467 (2013). arXiv:1203.6594 ADSCrossRefGoogle Scholar
  21. 21.
    F. Beutler, C. Blake, M. Colless, D.H. Jones, L. Staveley-Smith et al., The 6dF galaxy survey: Baryon acoustic oscillations and the local hubble constant. Mon. Not. R. Astron. Soc. 416, 3017–3032 (2011). arXiv:1106.3366 ADSCrossRefGoogle Scholar
  22. 22.
    C. Blake, E. Kazin, F. Beutler, T. Davis, D. Parkinson et al., The WiggleZ dark energy survey: mapping the distance-redshift relation with baryon acoustic oscillations. Mon. Not. R. Astron. Soc. 418, 1707–1724 (2011). arXiv:1108.2635 ADSCrossRefGoogle Scholar
  23. 23.
    J. Sollerman, E. Mörtsell, T. Davis, M. Blomqvist, B. Bassett et al., First-year sloan digital sky survey-II (SDSS-II) supernova results: constraints on non-standard cosmological models. Astrophys. J. 703, 1374–1385 (2009). arXiv:0908.4276 ADSCrossRefGoogle Scholar
  24. 24.
    H. van Dam, M. Veltman, Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 22, 397–411 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    V. Zakharov, Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970)ADSGoogle Scholar
  26. 26.
    A. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    C. de Rham, S. Renaux-Petel, Massive gravity on de Sitter and unique candidate for partially massless gravity. JCAP 1301, 035 (2013). arXiv:1206.3482 MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Hassan, A. Schmidt-May, M. von Strauss, On partially massless bimetric gravity. Phys. Lett. B 726, 834–838 (2013). arXiv:1208.1797 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    S. Hassan, A. Schmidt-May, M. von Strauss, Higher Derivative Gravity and Conformal Gravity From Bimetric and Partially Massless Bimetric Theory. arXiv:1303.6940
  30. 30.
    S. Hassan, A. Schmidt-May, M. von Strauss, Particular solutions in bimetric theory and their implications. Int. J. Mod. Phys. D 23, 1443002 (2014). arXiv:1407.2772 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Y. Akrami, T.S. Koivisto, D.F. Mota, M. Sandstad, Bimetric gravity doubly coupled to matter: theory and cosmological implications. JCAP 1310, 046 (2013). arXiv:1306.0004 ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    C. de Rham, K. Hinterbichler, R.A. Rosen, A.J. Tolley, Evidence for and obstructions to nonlinear partially massless gravity. Phys. Rev. D 88(2), 024003 (2013). arXiv:1302.0025 ADSCrossRefGoogle Scholar
  33. 33.
    C. de Rham, G. Gabadadze, L. Heisenberg, D. Pirtskhalava, Nonrenormalization and naturalness in a class of scalar-tensor theories. Phys. Rev. D 87(8), 085017 (2013). arXiv:1212.4128 ADSCrossRefGoogle Scholar
  34. 34.
    C. de Rham, L. Heisenberg, R.H. Ribeiro, Quantum corrections in massive gravity. Phys. Rev. D 88, 084058 (2013). arXiv:1307.7169 ADSCrossRefGoogle Scholar
  35. 35.
    L. Heisenberg, Quantum corrections in massive bigravity and new effective composite metrics. arXiv:1410.4239

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Center for Particle CosmologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations